Near-Linear Algorithms for Geometric Hitting Sets and Set Covers

被引:17
|
作者
Agarwal, Pankaj K. [1 ]
Pan, Jiangwei [1 ,2 ]
机构
[1] Duke Univ, Dept Comp Sci, Box 90129, Durham, NC 27708 USA
[2] Netflix Inc, 100 Winchester Cir, Los Gatos, CA 95032 USA
关键词
Geometric set cover; Near-linear algorithms; Multiplicative weight method; Disks; Rectangles; EPSILON-NETS; APPROXIMATION ALGORITHMS; FRACTIONAL PACKING; BOUNDS; SIZE;
D O I
10.1007/s00454-019-00099-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a finite range space Sigma = (X, R), with N = vertical bar X vertical bar+vertical bar R vertical bar, we present two simple algorithms, based on the multiplicative-weight method, for computing a small-size hitting set or set cover of Sigma. The first algorithm is a simpler variant of the BronnimannGoodrich algorithm but more efficient to implement, and the second algorithm can be viewed as solving a two-player zero-sum game. These algorithms, in conjunction with some standard geometric data structures, lead to near-linear algorithms for computing a small-size hitting set or set cover for a number of geometric range spaces. For example, they lead to O( Npolylog( N)) expected-time randomized O(1)-approximation algorithms for both hitting set and set cover if X is a set of points and R a set of disks in R-2.
引用
收藏
页码:460 / 482
页数:23
相关论文
共 50 条
  • [1] Near-Linear Algorithms for Geometric Hitting Sets and Set Covers
    Pankaj K. Agarwal
    Jiangwei Pan
    Discrete & Computational Geometry, 2020, 63 : 460 - 482
  • [2] Near-Linear Approximation Algorithms for Geometric Hitting Sets
    Agarwal, Pankaj K.
    Ezra, Esther
    Sharir, Micha
    PROCEEDINGS OF THE TWENTY-FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'09), 2009, : 23 - 32
  • [3] Near-Linear Approximation Algorithms for Geometric Hitting Sets
    Pankaj K. Agarwal
    Esther Ezra
    Micha Sharir
    Algorithmica, 2012, 63 : 1 - 25
  • [4] Near-Linear Approximation Algorithms for Geometric Hitting Sets
    Agarwal, Pankaj K.
    Ezra, Esther
    Sharir, Micha
    ALGORITHMICA, 2012, 63 (1-2) : 1 - 25
  • [5] Near-linear time construction of sparse neighborhood covers
    Awerbuch, B
    Berger, B
    Cowen, L
    Peleg, D
    SIAM JOURNAL ON COMPUTING, 1998, 28 (01) : 263 - 277
  • [6] Practical and efficient algorithms for the geometric hitting set problem
    Bus, Norbert
    Mustafa, Nabil H.
    Ray, Saurabh
    DISCRETE APPLIED MATHEMATICS, 2018, 240 : 25 - 32
  • [7] Near-Linear Time Approximation Algorithms for Curve Simplification
    Pankaj K. Agarwal
    Sariel Har-Peled
    Nabil H. Mustafa
    Yusu Wang
    Algorithmica , 2005, 42 : 203 - 219
  • [8] Near-linear time approximation algorithms for curve simplification
    Agarwal, PK
    Har-Peled, S
    Mustafa, NH
    Wang, YS
    ALGORITHMS-ESA 2002, PROCEEDINGS, 2002, 2461 : 29 - 41
  • [9] Near-linear time approximation algorithms for curve simplification
    Agarwal, PK
    Har-Peled, S
    Mustafa, NH
    Wang, YS
    ALGORITHMICA, 2005, 42 (3-4) : 203 - 219
  • [10] Deterministic, Near-Linear ε-Approximation Algorithm for Geometric Bipartite Matching
    Agarwal, Pankaj K.
    Chang, Hsien-Chih
    Raghvendra, Sharath
    Xiao, Allen
    PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22), 2022, : 1052 - 1065