Torus Fibrations and Localization of Index I - Polarization and Acyclic Fibrations

被引:0
|
作者
Fujita, Hajime [1 ]
Furuta, Mikio [2 ]
Yoshida, Takahiko [3 ]
机构
[1] Gakushuin Univ, Dept Math, Toshima Ku, Tokyo 1718588, Japan
[2] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1539814, Japan
[3] Meiji Univ, Grad Sch Sci & Technol, Dept Math, Tama Ku, Kawasaki, Kanagawa 2148571, Japan
关键词
Geometric quantization; index theory; localization; GEOMETRIC-QUANTIZATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a local Riemann-Roch number for an open symplectic manifold when a completely integrable system without Bohr-Sommerfeld fiber is provided on its end. In particular when a structure of a singular Lagrangian fibration is given on a closed symplectic manifold, its Riemann-Roch number is described as the sum of the number of nonsingular Bohr-Sommerfeld fibers and a contribution of the singular fibers. A key step of the proof is formally explained as a version of Witten's deformation applied to a Hilbert bundle.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条
  • [1] Torus Fibrations and Localization of Index IILocal Index for Acyclic Compatible System
    Hajime Fujita
    Mikio Furuta
    Takahiko Yoshida
    Communications in Mathematical Physics, 2014, 326 : 585 - 633
  • [2] Torus Fibrations and Localization of Index III
    Fujita, Hajime
    Furuta, Mikio
    Yoshida, Takahiko
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 327 (03) : 665 - 689
  • [3] Torus Fibrations and Localization of Index II
    Fujita, Hajime
    Furuta, Mikio
    Yoshida, Takahiko
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (03) : 585 - 633
  • [4] Torus Fibrations and Localization of Index IIIEquivariant Version and Its Applications
    Hajime Fujita
    Mikio Furuta
    Takahiko Yoshida
    Communications in Mathematical Physics, 2014, 327 : 665 - 689
  • [5] Torus rational fibrations
    Muñoz, V
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 140 (03) : 251 - 259
  • [6] Torus fibrations, gerbes, and duality
    Donagi, Ron
    Pantev, Tony
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 193 (901) : 1 - +
  • [7] Torus 2-isotropic fibrations
    Turiel, Francisco-Javier
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (1-2) : 77 - 80
  • [8] Localization and Fibrations that are cofibrations
    沈文淮,左再思
    数学进展, 1995, (03) : 257 - 258
  • [9] LAGRANGIAN 3-TORUS FIBRATIONS
    Bernard, Ricardo Castano
    Matessi, Diego
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 81 (03) : 483 - 573
  • [10] On polarization types of Lagrangian fibrations
    Wieneck, Benjamin
    MANUSCRIPTA MATHEMATICA, 2016, 151 (3-4) : 305 - 327