Attention Based Multi-Instance Thyroid Cytopathological Diagnosis with Multi-Scale Feature Fusion

被引:4
|
作者
Qiu, Shuhao [1 ]
Guo, Yao [1 ]
Zhu, Chuang [1 ]
Zhou, Wenli [1 ]
Chen, Huang [2 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing, Peoples R China
[2] China Japan Friendship Hosp, Dept Pathol, Beijing, Peoples R China
基金
国家重点研发计划; 北京市自然科学基金;
关键词
D O I
10.1109/ICPR48806.2021.9413184
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, deep learning has been popular in combining with cytopathology diagnosis. Using the whole slide images (WSI) scanned by electronic scanners at clinics, researchers have developed many algorithms to classify the slide (benign or malignant). However, the key area that support the diagnosis result can be relatively small in a thyroid WSI, and only the global label can be acquired, which make the direct use of the strongly supervised learning framework infeasible. What's more, because the clinical diagnosis of the thyroid cells requires the use of visual features in different scales, a generic feature extraction way may not achieve good performance. In this paper, we propose a weakly supervised multi-instance learning framework based on attention mechanism with multi-scale feature fusion (MSF) using convolutional neural network (CNN) for thyroid cytopathological diagnosis. We take each WSI as a bag, each bag contains multiple instances which are the different regions of the WSI, our framework is trained to learn the key area automatically and make the classification. We also propose a feature fusion structure, merge the low-level features into the final feature map and add an instance-level attention module in it, which improves the classification accuracy. Our model is trained and tested on the collected clinical data, reaches the accuracy of 93.2%, which outperforms the other existing methods. We also tested our model on a public histopathology dataset and achieves better result than the state-of-the-art deep multi-instance method.
引用
收藏
页码:3536 / 3541
页数:6
相关论文
共 50 条
  • [1] Multi-Instance Multi-Scale CNN for Medical Image Classification
    Li, Shaohua
    Liu, Yong
    Sui, Xiuchao
    Chen, Cheng
    Tjio, Gabriel
    Ting, Daniel Shu Wei
    Goh, Rick Siow Mong
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT IV, 2019, 11767 : 531 - 539
  • [2] SSD with multi-scale feature fusion and attention mechanism
    Liu, Qiang
    Dong, Lijun
    Zeng, Zhigao
    Zhu, Wenqiu
    Zhu, Yanhui
    Meng, Chen
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [3] SSD with multi-scale feature fusion and attention mechanism
    Qiang Liu
    Lijun Dong
    Zhigao Zeng
    Wenqiu Zhu
    Yanhui Zhu
    Chen Meng
    Scientific Reports, 13 (1)
  • [4] Text Detection Algorithm Based on Multi-Scale Attention Feature Fusion
    She, Xiangyang
    Liu, Zhe
    Dong, Lihong
    Computer Engineering and Applications, 2024, 60 (01) : 198 - 206
  • [5] Superpixel-based multi-scale multi-instance learning for hyperspectral image classification
    Huang, Shiluo
    Liu, Zheng
    Jin, Wei
    Mu, Ying
    PATTERN RECOGNITION, 2024, 149
  • [6] Pedestrian detection algorithm based on multi-scale feature extraction and attention feature fusion
    Xia, Hao
    Ma, Jun
    Ou, Jiayu
    Lv, Xinyao
    Bai, Chengjie
    DIGITAL SIGNAL PROCESSING, 2022, 121
  • [7] Face Gender and Age Classification Based on Multi-Task, Multi-Instance and Multi-Scale Learning
    Liao, Haibin
    Yuan, Li
    Wu, Mou
    Zhong, Liangji
    Jin, Guonian
    Xiong, Neal
    APPLIED SCIENCES-BASEL, 2022, 12 (23):
  • [8] Multi-instance learning based on representative instance and feature mapping
    Wang, Xingqi
    Wei, Dan
    Cheng, Hui
    Fang, Jinglong
    NEUROCOMPUTING, 2016, 216 : 790 - 796
  • [9] Real-time instance segmentation of surgical instruments using attention and multi-scale feature fusion
    Angeles Ceron, Juan Carlos
    Ochoa Ruiz, Gilberto
    Chang, Leonardo
    Ali, Sharib
    MEDICAL IMAGE ANALYSIS, 2022, 81
  • [10] Diagnosis of Arrhythmia Based on Multi-scale Feature Fusion and Imbalanced Data
    Cheng, Z.
    Liu, Zx
    Yang, Gl
    PROCEEDINGS OF 2022 7TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2022, 2022, : 92 - 98