A measurement of the integrated Sachs-Wolfe effect with the Rapid ASKAP Continuum Survey

被引:3
|
作者
Bahr-Kalus, Benedict [1 ]
Parkinson, David [1 ,2 ]
Asorey, Jacobo [3 ]
Camera, Stefano [4 ,5 ,6 ]
Hale, Catherine [7 ]
Qin, Fei [1 ]
机构
[1] Korea Astron & Space Sci Inst, Daedeok Daero 776, Daejeon 34055, South Korea
[2] Univ Sci & Technol, Daejeon 34113, South Korea
[3] Ctr Invest Energet Medioambientales & Tecnol CIEM, Av Complutense 40, D-28040 Madrid, Spain
[4] Univ Torino, Dipartimenio Fis, Via P Giuria 1, I-10125 Turin, Italy
[5] INFN Ist Nazl Fis Nucl, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy
[6] Univ Western Cape, Dept Phys & Astron, ZA-7535 Cape Town, South Africa
[7] Univ Edinburgh, Sch Phys & Astron, Royal Observ, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland
关键词
dark energy; large-scale structure of Universe; radio continuum: galaxies; LARGE-SCALE STRUCTURE; STATISTICAL-ANALYSIS; CROSS-CORRELATION; NON-GAUSSIANITY; RADIO; ANISOTROPY; SKY; MODEL; BIAS; SIMULATION;
D O I
10.1093/mnras/stac2040
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The evolution of the gravitational potentials on large scales due to the accelerated expansion of the Universe is an important and independent probe of dark energy, known as the integrated Sachs-Wolfe (ISW) effect. We measure this ISW effect through cross-correlating the cosmic microwave background maps from the Planck satellite with a radio continuum galaxy distribution map from the recent Rapid ASKAP Continuum Survey (RACS). We detect a positive cross-correlation at similar to 2.8 sigma relative to the null hypothesis of no correlation. We parametrize the strength of the ISW effect through an amplitude parameter and find the constraints to be A(ISW) = 0.94(-0.41)(+0.42), which is consistent with the prediction of an accelerating universe within the current concordance cosmological model, ACDM. The credible interval on this parameter is independent of the different bias models and redshift distributions that were considered when marginalizing over the nuisance parameters. We also detect a power excess in the galaxy autocorrelation angular power spectrum on large scales (l <= 40), and investigate possible systematic causes.
引用
收藏
页码:3785 / 3803
页数:19
相关论文
共 50 条
  • [1] WISE measurement of the integrated Sachs-Wolfe effect
    Ferraro, Simone
    Sherwin, Blake D.
    Spergel, David N.
    [J]. PHYSICAL REVIEW D, 2015, 91 (08):
  • [2] Mapping the integrated Sachs-Wolfe effect
    Manzotti, A.
    Dodelson, S.
    [J]. PHYSICAL REVIEW D, 2014, 90 (12):
  • [3] Nonlinear integrated Sachs-Wolfe effect
    Cooray, A
    [J]. PHYSICAL REVIEW D, 2002, 65 (08) : 835181 - 8351811
  • [4] Measuring the integrated Sachs-Wolfe effect
    Dupe, F. -X.
    Rassat, A.
    Starck, J. -L.
    Fadili, M. J.
    [J]. ASTRONOMY & ASTROPHYSICS, 2011, 534
  • [5] A detection of the integrated Sachs-Wolfe effect
    Boughn, SP
    Crittenden, RG
    [J]. NEW ASTRONOMY REVIEWS, 2005, 49 (2-6) : 75 - 78
  • [6] Integrated Sachs-Wolfe effect in massive bigravity
    Enander, Jonas
    Akrami, Yashar
    Mortsell, Edvard
    Renneby, Malin
    Solomon, Adam R.
    [J]. PHYSICAL REVIEW D, 2015, 91 (08):
  • [7] The integrated Sachs-Wolfe effect in the AvERA cosmology
    Beck, Robert
    Csabai, Istvan
    Racz, Gabor
    Szapudi, Istvan
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 479 (03) : 3582 - 3591
  • [8] INTEGRATED SACHS-WOLFE EFFECT FOR GRAVITATIONAL RADIATION
    Laguna, Pablo
    Larson, Shane L.
    Spergel, David
    Yunes, Nicolas
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2010, 715 (01) : L12 - L15
  • [9] On the sources of the late integrated Sachs-Wolfe effect
    Fullana, MJ
    Sáez, D
    [J]. NEW ASTRONOMY, 2000, 5 (02) : 109 - 120
  • [10] The significance of the integrated Sachs-Wolfe effect revisited
    Giannantonio, Tommaso
    Crittenden, Robert
    Nichol, Robert
    Ross, Ashley J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 426 (03) : 2581 - 2599