2.5D finite-difference solution of the acoustic wave equation

被引:15
|
作者
Novais, A [1 ]
Santos, LT [1 ]
机构
[1] Univ Estadual Campinas, IMECC, DMA, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1111/j.1365-2478.2005.00488.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The finite-difference method applied to the full 3D wave equation is a rather time-consuming process. However, in the 2.5D case, we can take advantage of the medium symmetry. By taking the Fourier transform with respect to the out-of-plane direction (the symmetry axis), the 3D problem can be reduced to a repeated 2D problem. The third dimension is taken into account by a sum over the corresponding wave-vector component. A criterion for where to end this theoretically infinite sum derives from the stability conditions of the finite-difference schemes employed. In this way, the computation time of the finite-difference calculations can be considerably reduced. The quality of the modelling results obtained with this 2.5D finite-difference scheme is comparable to that obtained using a standard 3D finite-difference scheme.
引用
收藏
页码:523 / 531
页数:9
相关论文
共 50 条
  • [1] 2.5D acoustic finite-difference modeling in variable density media
    Costa, J
    Novais, A
    Neto, FDS
    Tygel, M
    [J]. JOURNAL OF SEISMIC EXPLORATION, 2005, 13 (04): : 323 - 335
  • [2] 2.5D Spectral Finite-difference Method for Geophysical Applications
    Li, Dawei
    Chen, Fangzhou
    Chen, Jiefu
    Chen, Ji
    [J]. 2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 3356 - 3356
  • [3] FINITE-DIFFERENCE SOLUTION TO THE PARABOLIC WAVE-EQUATION
    LEE, D
    BOTSEAS, G
    PAPADAKIS, JS
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1981, 70 (03): : 795 - 800
  • [4] A 2.5D finite-difference algorithm for elastic wave modeling using near-optimal quadratures
    Li, Maokun
    Druskin, Vladimir
    Abubakar, Aria
    Habashy, Tarek M.
    [J]. GEOPHYSICS, 2016, 81 (04) : T155 - T162
  • [5] ACCURACY OF FINITE-DIFFERENCE MODELING OF ACOUSTIC-WAVE EQUATION
    KELLY, KR
    ALFORD, RM
    [J]. GEOPHYSICS, 1973, 38 (06) : 1207 - 1207
  • [6] ACCURACY OF FINITE-DIFFERENCE MODELING OF ACOUSTIC-WAVE EQUATION
    ALFORD, RM
    KELLY, KR
    BOORE, DM
    [J]. GEOPHYSICS, 1974, 39 (06) : 834 - 842
  • [7] Iterative finite-difference solution analysis of acoustic wave equation in the Laplace-Fourier domain
    Um, Evan Schankee
    Commer, Michael
    Newman, Gregory A.
    [J]. GEOPHYSICS, 2012, 77 (02) : T29 - T36
  • [8] Iterative finite-difference solution analysis of acoustic wave equation in the Laplace-Fourier domain
    [J]. Um, E.S. (evanum@gmail.com), 1600, Society of Exploration Geophysicists (77):
  • [9] A FINITE-DIFFERENCE SOLUTION OF THE EIKONAL EQUATION
    LOKTIONOV, BA
    PLESHKEVICH, AL
    [J]. IZVESTIYA AKADEMII NAUK SSSR FIZIKA ZEMLI, 1989, (12): : 57 - 64
  • [10] Curvilinear-grid finite-difference numerical simulation method for generalized first-order 2.5D time-domain wave equation
    Yang S.
    Bai C.
    Zhou B.
    [J]. Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2021, 56 (06): : 1262 - 1278