Incorporating Intelligence in Fog Computing for Big Data Analysis in Smart Cities

被引:217
|
作者
Tang, Bo [1 ]
Chen, Zhen [2 ]
Hefferman, Gerald [3 ]
Pei, Shuyi [2 ]
Wei, Tao [2 ]
He, Haibo [2 ]
Yang, Qing [2 ]
机构
[1] Hofstra Univ, Dept Comp Sci, Hempstead, NY 11549 USA
[2] Univ Rhode Isl, Dept Elect Comp & Biomed Engn, Kingston, RI 02881 USA
[3] Brown Univ, Warren Alpert Med Sch, Providence, RI 02903 USA
基金
美国国家科学基金会;
关键词
Distributed computing; fiber optic sensor; fog computing; Internet of Things (IoT); smart cities; smart pipeline; OPTICAL-FIBER; CLASSIFICATION; INTERNET; THINGS; IOT;
D O I
10.1109/TII.2017.2679740
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data intensive analysis is the major challenge in smart cities because of the ubiquitous deployment of various kinds of sensors. The natural characteristic of geodistribution requires a new computing paradigm to offer location-awareness and latency-sensitive monitoring and intelligent control. Fog Computing that extends the computing to the edge of network, fits this need. In this paper, we introduce a hierarchical distributed Fog Computing architecture to support the integration of massive number of infrastructure components and services in future smart cities. To secure future communities, it is necessary to integrate intelligence in our Fog Computing architecture, e.g., to perform data representation and feature extraction, to identify anomalous and hazardous events, and to offer optimal responses and controls. We analyze case studies using a smart pipeline monitoring system based on fiber optic sensors and sequential learning algorithms to detect events threatening pipeline safety. A working prototype was constructed to experimentally evaluate event detection performance of the recognition of 12 distinct events. These experimental results demonstrate the feasibility of the system's city-wide implementation in the future.
引用
收藏
页码:2140 / 2150
页数:11
相关论文
共 50 条
  • [1] Fog Computing for Smart Cities' Big Data Management and Analytics: A Review
    Badidi, Elarbi
    Mahrez, Zineb
    Sabir, Essaid
    FUTURE INTERNET, 2020, 12 (11) : 1 - 29
  • [2] On big data, artificial intelligence and smart cities
    Allam, Zaheer
    Dhunny, Zaynah A.
    CITIES, 2019, 89 : 80 - 91
  • [3] Towards a Cloud Computing Paradigm for Big Data Analysis in Smart Cities
    Massobrio, R.
    Nesmachnow, S.
    Tchernykh, A.
    Avetisyan, A.
    Radchenko, G.
    PROGRAMMING AND COMPUTER SOFTWARE, 2018, 44 (03) : 181 - 189
  • [4] Towards a Cloud Computing Paradigm for Big Data Analysis in Smart Cities
    R. Massobrio
    S. Nesmachnow
    A. Tchernykh
    A. Avetisyan
    G. Radchenko
    Programming and Computer Software, 2018, 44 : 181 - 189
  • [5] An Approach for Smart Management of Big Data in the Fog Computing Context
    Hosseinpour, Farhoud
    Plosila, Juha
    Tenhunen, Hannu
    2016 8TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGY AND SCIENCE (CLOUDCOM 2016), 2016, : 468 - 471
  • [6] IoT big data analytics for smart homes with fog and cloud computing
    Yassine, Abdulsalam
    Singh, Shailendra
    Hossain, M. Shamim
    Muhammad, Ghulam
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 91 : 563 - 573
  • [7] Optimizing Edge Computing for Big Data Processing in Smart Cities
    Kumar, Subramanian Sendil
    Singireddy, Sneha
    Nanan, Botlagunta Preethish
    Recharla, Mahesh
    Gadi, Anil Lokesh
    Paleti, Srinivasarao
    METALLURGICAL & MATERIALS ENGINEERING, 2025, 31 (03) : 31 - 39
  • [8] Big Data for smart cities; [Big Data für Smart Cities]
    Fasel D.
    Informatik-Spektrum, 2017, 40 (1) : 14 - 24
  • [9] Fog Computing for Sustainable Smart Cities: A Survey
    Perera, Charith
    Qin, Yongrui
    Estrella, Julio C.
    Reiff-Marganiec, Stephan
    Vasilakos, Athanasios V.
    ACM COMPUTING SURVEYS, 2017, 50 (03)
  • [10] A Framework for Big Data Analysis in Smart Cities
    Elhoseny, Hisham
    Elhoseny, Mohamed
    Riad, A. M.
    Hassanien, Aboul Ella
    INTERNATIONAL CONFERENCE ON ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS (AMLTA2018), 2018, 723 : 405 - 414