On error exponents in hypothesis testing

被引:26
|
作者
Tuncel, E [1 ]
机构
[1] Univ Calif Riverside, Dept Elect Engn, Riverside, CA 92521 USA
关键词
distributed detection; error exponents; large deviations; M-ary hypothesis testing; Neyman-Pearson test; Renyi's alpha-divergence;
D O I
10.1109/TIT.2005.851769
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The classical result of Blahut, which characterizes achievable error exponents in binary hypothesis testing, is generalized in two different directions. First, in M-ary hypothesis testing, the tradeoff of all M(M - 1) types of error exponents and corresponding optimal decision schemes are explored. Then, motivated by a power-constrained distributed detection scenario, binary hypothesis testing is revisited, and the tradeoff of power consumption versus error exponents is fully characterized. In the latter scenario, sensors are allowed to make random decisions as to whether they should remain silent and save power, or transmit and improve detection quality. It is then shown by an example that optimal sensor decisions may indeed be random.
引用
收藏
页码:2945 / 2950
页数:6
相关论文
共 50 条
  • [1] On error exponents in quantum hypothesis testing
    Ogawa, T
    Hayashi, M
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (06) : 1368 - 1372
  • [2] On error exponents in quantum hypothesis testing
    Ogawa, T
    Hayashi, M
    [J]. 2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 479 - 479
  • [3] Error Exponents in Distributed Hypothesis Testing of Correlations
    Hadar, Uri
    Liu, Jingbo
    Polyanskiy, Yury
    Shayevitz, Ofer
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 2674 - 2678
  • [4] Error exponents for hypothesis testing of the general source
    Iriyama, K
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (04) : 1517 - 1522
  • [5] ERROR EXPONENTS FOR COMPOSITE HYPOTHESIS TESTING WITH SMALL SAMPLES
    Huang, Dayu
    Meyn, Sean
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3261 - 3264
  • [6] Error exponents in hypothesis testing for correlated states on a spin chain
    Hiai, Fumio
    Mosonyi, Milan
    Ogawa, Tomohiro
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (03)
  • [7] Error Exponents for Composite Hypothesis Testing of Markov Forest Distributions
    Tan, Vincent Y. F.
    Anandkumar, Animashree
    Willsky, Alan S.
    [J]. 2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1613 - 1617
  • [8] Generalized Error Exponents for Small Sample Universal Hypothesis Testing
    Huang, Dayu
    Meyn, Sean
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (12) : 8157 - 8181
  • [9] Error Exponents in Multiple Hypothesis Testing for Arbitrarily Varying Sources
    Grigoryan, Naira M.
    Harutyunyan, Ashot N.
    [J]. 2010 IEEE INFORMATION THEORY WORKSHOP (ITW), 2010,
  • [10] A remark on unified error exponents: Hypothesis testing, data compression and measure concentration
    Kontoyiannis, L
    Sezer, AD
    [J]. STOCHASTIC INEQUALITIES AND APPLICATIONS, 2003, 56 : 23 - 32