Online Appearance Model Learning and Generation for Adaptive Visual Tracking

被引:14
|
作者
Wang, Peng [1 ]
Qiao, Hong [1 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing 100029, Peoples R China
关键词
Adaptive visual tracking; appearance variation; collaborative models; gradual drift; model learning; OBJECT TRACKING; ROBUST TRACKING; COLOR;
D O I
10.1109/TCSVT.2011.2105598
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Several adaptive visual tracking algorithms have been recently proposed to capture the varying appearance of target. However, adaptability may also result in the problem of gradual drift, especially when the target appearance changes drastically. This paper gives some theoretical principles for online learning of target model, and then presents a novel adaptive tracking algorithm which is able to effectively cope with drastic variations in target appearance and resist gradual drift. Once target is localized in each frame, the patches sampled from target observation are first classified into foreground and background using an effective classifier. Then the adaptive, pure and time-continuous target model is extracted online through two processes: absorption process and rejection process, through which only the reliable features with high separability are absorbed in the new target model, while the "dangerous" features which may cause interfusion of background patterns are rejected. To minimize the influence of background and keep the temporal continuity of target model, two collaborative models dominant model and continuous model are designed. The proposed learning and generation mechanisms of target model are finally embedded in an adaptive tracking system. Experimental results demonstrate the robust performance of the proposed algorithm under challenging conditions.
引用
收藏
页码:156 / 169
页数:14
相关论文
共 50 条
  • [1] Visual tracking with tree-structured appearance model for online learning
    Lv, Yun-Qiu
    Liu, Kai
    Cheng, Fei
    Li, Wei
    IET IMAGE PROCESSING, 2019, 13 (12) : 2106 - 2115
  • [2] ADAPTIVE APPEARANCE LEARNING FOR VISUAL OBJECT TRACKING
    Khan, Zulfiqar Hasan
    Gu, Irene Yu-Hua
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 1413 - 1416
  • [3] Probabilistic visual tracking based on adaptive appearance model
    Institute of Aerospace Information and Control, Shanghai Jiaotong University, Shanghai 200030, China
    不详
    Kongzhi yu Juece Control Decis, 2007, 1 (53-58):
  • [4] Discriminative learning of online appearance modeling methods for visual tracking
    Zhongming Liao
    Xiuhong Xu
    Zhaosheng Xu
    Azlan Ismail
    Journal of Optics, 2024, 53 : 1129 - 1136
  • [5] Discriminative learning of online appearance modeling methods for visual tracking
    Liao, Zhongming
    Xu, Xiuhong
    Xu, Zhaosheng
    Ismail, Azlan
    JOURNAL OF OPTICS-INDIA, 2024, 53 (02): : 1129 - 1136
  • [6] Generative online learning of appearance modeling approaches for visual tracking
    Song, Huan
    Hou, Zhihua
    Qian, Leren
    JOURNAL OF OPTICS-INDIA, 2024, 53 (03): : 1854 - 1860
  • [7] Generative online learning of appearance modeling approaches for visual tracking
    Song, Huan
    Hou, Zhihua
    Qian, Leren
    JOURNAL OF OPTICS-INDIA, 2024, 53 (03): : 1854 - 1860
  • [8] Adaptive multi-cue tracking by online appearance learning
    Wang, Qing
    Chen, Feng
    Xu, Wenli
    NEUROCOMPUTING, 2011, 74 (06) : 1035 - 1045
  • [9] Adaptive Online Learning Based Robust Visual Tracking
    Yang, Weiming
    Zhao, Meirong
    Huang, Yinguo
    Zheng, Yelong
    IEEE ACCESS, 2018, 6 : 14790 - 14798
  • [10] DICTIONARY LEARNING FOR A SPARSE APPEARANCE MODEL IN VISUAL TRACKING
    Rousseau, Sylvain
    Chainais, Pierre
    Garnier, Christelle
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4506 - 4510