Superconducting quantum many-body circuits for quantum simulation and computing

被引:11
|
作者
Wilkinson, Samuel A. [1 ]
Hartmann, Michael J. [1 ,2 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg FAU, Dept Phys, D-91058 Erlangen, Germany
[2] Max Planck Inst Sci Light, D-91058 Erlangen, Germany
关键词
INSULATOR; PHOTONS; PHYSICS; STATE;
D O I
10.1063/5.0008202
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quantum simulators are attractive as a means to study many-body quantum systems that are not amenable to classical numerical treatment. A versatile framework for quantum simulation is offered by superconducting circuits. In this perspective, we discuss how superconducting circuits allow the engineering of a wide variety of interactions, which, in turn, allows the simulation of a wide variety of model Hamiltonians. In particular, we focus on strong photon-photon interactions mediated by nonlinear elements. This includes on-site, nearest-neighbor, and four-body interactions in lattice models, allowing the implementation of extended Bose-Hubbard models and the toric code. We discuss not only the present state in analog quantum simulation but also future perspectives of superconducting quantum simulation, which open up when concatenating quantum gates in emerging quantum computing platforms.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Superconducting Quantum Simulation for Many-Body Physics beyond Equilibrium
    Yao, Yunyan
    Xiang, Liang
    [J]. ENTROPY, 2024, 26 (07)
  • [2] Quantum computing with and for many-body physics
    Thomas Ayral
    Pauline Besserve
    Denis Lacroix
    Edgar Andres Ruiz Guzman
    [J]. The European Physical Journal A, 59
  • [3] Quantum computing with and for many-body physics
    Ayral, Thomas
    Besserve, Pauline
    Lacroix, Denis
    Guzman, Edgar Andres Ruiz
    [J]. EUROPEAN PHYSICAL JOURNAL A, 2023, 59 (10):
  • [4] Observing quantum many-body scars in random quantum circuits
    Andrade, Barbara
    Bhattacharya, Utso
    Chhajlany, Ravindra W.
    Grass, Tobias
    Lewenstein, Maciej
    [J]. PHYSICAL REVIEW A, 2024, 109 (05)
  • [5] Observation of quantum many-body effects due to zero point fluctuations in superconducting circuits
    Leger, Sebastien
    Puertas-Martinez, Javier
    Bharadwaj, Karthik
    Dassonneville, Remy
    Delaforce, Jovian
    Foroughi, Farshad
    Milchakov, Vladimir
    Planat, Luca
    Buisson, Olivier
    Naud, Cecile
    Hasch-Guichard, Wiebke
    Florens, Serge
    Snyman, Izak
    Roch, Nicolas
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [6] Observation of quantum many-body effects due to zero point fluctuations in superconducting circuits
    Sébastien Léger
    Javier Puertas-Martínez
    Karthik Bharadwaj
    Rémy Dassonneville
    Jovian Delaforce
    Farshad Foroughi
    Vladimir Milchakov
    Luca Planat
    Olivier Buisson
    Cécile Naud
    Wiebke Hasch-Guichard
    Serge Florens
    Izak Snyman
    Nicolas Roch
    [J]. Nature Communications, 10
  • [8] Emulating Many-Body Localization with a Superconducting Quantum Processor
    Xu, Kai
    Chen, Jin-Jun
    Zeng, Yu
    Zhang, Yu-Ran
    Song, Chao
    Liu, Wuxin
    Guo, Qiujiang
    Zhang, Pengfei
    Xu, Da
    Deng, Hui
    Huang, Keqiang
    Wang, H.
    Zhu, Xiaobo
    Zheng, Dongning
    Fan, Heng
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (05)
  • [9] Stark Many-Body Localization on a Superconducting Quantum Processor
    Guo, Qiujiang
    Cheng, Chen
    Li, Hekang
    Xu, Shibo
    Zhang, Pengfei
    Wang, Zhen
    Song, Chao
    Liu, Wuxin
    Ren, Wenhui
    Dong, Hang
    Mondaini, Rubem
    Wang, H.
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (24)
  • [10] Preparation of many-body states for quantum simulation
    Ward, Nicholas J.
    Kassal, Ivan
    Aspuru-Guzik, Alan
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (19):