High electrochemical performances of solid nano-composite star polymer electrolytes enhanced by different carbon nanomaterials

被引:23
|
作者
Wang, Ailian [1 ]
Xu, Hao [1 ]
Liu, Xu [1 ]
Wang, Shi [1 ]
Zhou, Qian [1 ]
Chen, Jie [1 ]
Zhang, Liaoyun [1 ]
机构
[1] Univ Chinese Acad Sci, Coll Chem & Chem Engn, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
All-solid-state electrolyte; Composite polymer electrolyte; Hyperbranched star polymer; Carbon nanomaterials; Electrochemical property; BRANCHED POLY(ETHYLENE OXIDE); IONIC-CONDUCTIVITY; LITHIUM BATTERIES; MEMBRANES;
D O I
10.1016/j.compscitech.2017.09.013
中图分类号
TB33 [复合材料];
学科分类号
摘要
Here, two type of composite star polymer electrolytes enhanced by carbon nano-tube (CNT) or fullerene (C-60) prepared through a solution-casting technique are investigated. The as-prepared free-standing carbon nano-composite polymer electrolyte membranes exhibit excellent comprehensive performances including high thermal stability (initial thermal degradation temperatures about 383 degrees C) and good electrochemical properties. However, different carbon nanomaterials bring different influence on electrochemical performances of composite polymer electrolytes. The ionic conductivity of carbon nanotube composite polymer electrolyte (HBPS-(PMMA-b-PPEGIVIA)(30)/CNT/LiTFSI) is higher than that of fullerene composite polymer electrolyte. The highest ionic conductivity of HBPS-(PMMA-b-PPEGMA)(30)/CNT/LiTFSI electrolyte can reach 1.06 x 10(-5) S cm(-1) at 30 degrees C and lithium-ion transference number reaches 0.52. In addition, two types of carbon nano-composite star polymer electrolytes both exhibit wide electrochemical window with oxidation potential above 5.2 V, good interfacial stability and interfacial compatibility. Moreover, assembled Li/LiFePO4 cells based on HBPS-(PMMA-b-PPEGMA)(30)/CNT/LiTFSI electrolytes possess good specific capacity with the highest value of 133 mAhh g(-1), while the cells based on HBPS-(PMMA-b-PPEGMA)(30)/C-60/LiTFSI electrolytes show a great cycle stability. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:68 / 75
页数:8
相关论文
共 50 条
  • [1] Nano-composite solid polymer electrolytes
    Dissanayake, MAKL
    SOLID STATE IONICS: TRENDS IN THE NEW MILLENNIUM, PROCEEDINGS, 2002, : 251 - 262
  • [2] Nano-composite solid polymer electrolytes for solid state ionic devices
    M. A. K. Lakshman Dissanayake
    Ionics, 2004, 10 : 221 - 225
  • [3] Nano-composite solid polymer electrolytes for solid state ionic devices
    Dissanayake, MAKL
    IONICS, 2004, 10 (3-4) : 221 - 225
  • [4] Study of alkaline nano-composite polymer electrolytes
    Zhao, J
    Yuan, AB
    Song, WX
    ACTA CHIMICA SINICA, 2005, 63 (03) : 219 - 222
  • [5] Insights into the effects of different inorganic fillers on the electrochemical performances of polymer solid electrolytes
    Li, Jie
    Zhong, Liang
    Li, Jing-xuan
    Wu, Heng-fei
    Shao, Wen-wen
    Wang, Peng-qin
    Liu, Ming-quan
    Zhang, Gang
    Jing, Mao-xiang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 671
  • [6] Ion conducting nano-composite polymer electrolytes: synthesis and ion transport characterization
    Chandra, Angesh
    POLYMER BULLETIN, 2017, 74 (12) : 4815 - 4826
  • [7] Na+ Ion Conducting Nano-Composite Solid Polymer Electrolyte-Application to Electrochemical Cell
    Manjula, K.
    Reddy, V. John
    ORIENTAL JOURNAL OF CHEMISTRY, 2022, 38 (05) : 1204 - 1208
  • [8] Ion conducting nano-composite polymer electrolytes: synthesis and ion transport characterization
    Angesh Chandra
    Polymer Bulletin, 2017, 74 : 4815 - 4826
  • [9] Metal nano-composite induced light trapping and enhanced solar cell performances
    Mbuyise, Xolani G.
    Dlamini, Mpilo W.
    Mola, Genene Tessema
    PHYSICA B-CONDENSED MATTER, 2021, 622
  • [10] Nano-composite of polypyrrole/modified mesoporous carbon for electrochemical capacitor application
    Zhang, Jing
    Kong, Ling-Bin
    Cai, Jian-Jun
    Luo, Yong-Chun
    Kang, Long
    ELECTROCHIMICA ACTA, 2010, 55 (27) : 8067 - 8073