Mediation analysis is indispensable for investigating how a treatment causally affects an outcome via intervening variables. Existing discussions on the validity of causal inference drawn from mediation analysis have prioritized single mediator settings. In this article, we focus on improving causal inference when investigating multiple mediators. We pay particular attention to the prevalent practice of exploring mediated effects along various paths linking several mediators. Such approaches are fraught with stringent-yet often overlooked-causal assumptions that predicate valid inference of indirect or mediated effects. To mitigate the risk of incorrect inference, we introduce a conceptually and substantively novel approach from the causal inference literature: interventional indirect effects. Interventional indirect effects focus on the contributions of each distinct mediator to the treatment effect on the outcome. An appealing feature of this approach is that valid causal inference of mediation analysis with multiple mediators can be attained without assuming a (correct) causal structure among the mediators. Using a social psychology experiment as a running example, we illustrate how researchers can readily estimate and interpret the proposed interventional effects in practice. We hope this article will encourage explaining and substantiating the causal assumptions underpinning mediation analysis with multiple mediators to fortify causal inference in psychology research.
机构:
Univ London London Sch Hyg & Trop Med, Ctr Stat Methodol, London WC1E 7HT, EnglandUniv London London Sch Hyg & Trop Med, Ctr Stat Methodol, London WC1E 7HT, England
Daniel, R. M.
De Stavola, B. L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ London London Sch Hyg & Trop Med, Ctr Stat Methodol, London WC1E 7HT, EnglandUniv London London Sch Hyg & Trop Med, Ctr Stat Methodol, London WC1E 7HT, England
De Stavola, B. L.
Cousens, S. N.
论文数: 0引用数: 0
h-index: 0
机构:
Univ London London Sch Hyg & Trop Med, Ctr Stat Methodol, London WC1E 7HT, EnglandUniv London London Sch Hyg & Trop Med, Ctr Stat Methodol, London WC1E 7HT, England
机构:
Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
Univ Michigan, Survey Methodol Program, Inst Social Res, Ann Arbor, MI 48106 USAUniv Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
Elliott, Michael R.
Raghunathan, Trivellore E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
Univ Michigan, Survey Methodol Program, Inst Social Res, Ann Arbor, MI 48106 USAUniv Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
Raghunathan, Trivellore E.
Li, Yun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USAUniv Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
机构:
Anhui Univ Sci & Technol, Coll Sci, Huainan, Peoples R ChinaAnhui Univ Sci & Technol, Coll Sci, Huainan, Peoples R China
Zhou, Yuejin
Wang, Wenwu
论文数: 0引用数: 0
h-index: 0
机构:
Qufu Normal Univ, Qufu, Peoples R China
Qufu Normal Univ, Sch Stat & Data Sci, Qufu, Peoples R ChinaAnhui Univ Sci & Technol, Coll Sci, Huainan, Peoples R China
Wang, Wenwu
Hu, Tao
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Beijing, Peoples R ChinaAnhui Univ Sci & Technol, Coll Sci, Huainan, Peoples R China
Hu, Tao
Tong, Tiejun
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Baptist Univ, Hong Kong, Peoples R ChinaAnhui Univ Sci & Technol, Coll Sci, Huainan, Peoples R China
Tong, Tiejun
Liu, Zhonghua
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, New York, NY USA
Columbia Univ, Dept Biostat, New York, NY 10027 USAAnhui Univ Sci & Technol, Coll Sci, Huainan, Peoples R China