The Newman-Penrose formalism for Riemannian 3-manifolds

被引:7
|
作者
Aazami, Amir Babak [1 ]
机构
[1] Univ Tokyo, Kavli IPMU WPI, Kashiwa, Chiba 2778583, Japan
关键词
Differential geometry; Vector flows; Newman-Penrose formalism; RADIATION; THEOREM;
D O I
10.1016/j.geomphys.2015.03.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We adapt the Newman-Penrose formalism in general relativity to the setting of three-dimensional Riemannian geometry, and prove the following results. Given a Riemannian 3-manifold without boundary and a smooth unit vector field k with geodesic flow, if an integral curve of k is hypersurface-orthogonal at a point, then it is so at every point along that curve. Furthermore, if k is complete, hypersurface-orthogonal, and satisfies Ric(k, k) >= 0, then its divergence must be nonnegative. As an application, we show that if the Riemannian 3-manifold is closed and a unit length k with geodesic flow satisfies Ric(k, k) > 0, then k cannot be hypersurface-orthogonal, thus recovering a result in Harris and Paternain (2013). Turning next to scalar curvature, we derive an evolution equation for the scalar curvature in terms of unit vector fields k that satisfy the condition R(k, ., ., .) = 0. When the scalar curvature is a nonzero constant, we show that a hypersurface-orthogonal unit vector field k satisfies R(k, ., ., .) = 0 if and only if it is a Killing vector field. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [1] NEWMAN-PENROSE FORMALISM
    PAPAPETROU, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 272 (23): : 1537 - +
  • [2] GRAVITATIONAL LAGRANGIAN IN NEWMAN-PENROSE FORMALISM
    HERRERA, L
    LETTERE AL NUOVO CIMENTO, 1978, 21 (01): : 11 - 14
  • [3] Gravitational vacua in the Newman-Penrose formalism
    Mao, Pujian
    PHYSICAL REVIEW D, 2024, 110 (06)
  • [4] NONLINEAR ELECTRODYNAMICS IN NEWMAN-PENROSE FORMALISM
    BICAK, J
    SLAVIK, J
    ACTA PHYSICA POLONICA B, 1975, 6 (04): : 489 - 508
  • [5] Newman-Penrose formalism in quadratic gravity
    Svarc, R.
    Pravdova, A.
    Miskovsky, D.
    PHYSICAL REVIEW D, 2023, 107 (02)
  • [6] A NEWMAN-PENROSE FORMALISM FOR GRAVITATIONAL INSTANTONS
    GOLDBLATT, E
    GENERAL RELATIVITY AND GRAVITATION, 1994, 26 (10) : 979 - 997
  • [7] GRAVITIONAL LAGRANGIAN IN NEWMAN-PENROSE FORMALISM
    HERRERA, L
    ACTA CIENTIFICA VENEZOLANA, 1977, 28 : 86 - 86
  • [8] Newman-Penrose formalism for gravitational shock waves
    Hayashi, K
    Samura, T
    MODERN PHYSICS LETTERS A, 1996, 11 (12) : 1023 - 1030
  • [9] (Conformal) Killing Vectors in the Newman-Penrose Formalism
    Garry Ludwig
    S. Brian Edgar
    General Relativity and Gravitation, 2002, 34 : 807 - 835
  • [10] GENERAL TRANSFORMATION LAWS IN THE NEWMAN-PENROSE FORMALISM
    LUDWIG, G
    CLASSICAL AND QUANTUM GRAVITY, 1986, 3 (06) : L141 - L147