Lozenge Tilings, Glauber Dynamics and Macroscopic Shape

被引:7
|
作者
Laslier, Benoit [1 ]
Toninelli, Fabio Lucio [2 ,3 ]
机构
[1] Ctr Math Sci, Statslab, Cambridge CB3 0WA, England
[2] Univ Lyon 1, CNRS, F-69622 Villeurbanne, France
[3] Univ Lyon 1, Inst Camille Jordan, F-69622 Villeurbanne, France
关键词
Height Function; Equilibrium Measure; Discrete Domain; Uniform Measure; Glauber Dynamic;
D O I
10.1007/s00220-015-2396-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Glauber dynamics on the set of tilings of a finite domain of the plane with lozenges of side 1/L. Under the invariant measure of the process (the uniform measure over all tilings), it is well known (Cohn et al. J Am Math Soc 14:297-346, 2001) that the random height function associated to the tiling converges in probability, in the scaling limit L -> infinity, to a non-trivial macroscopic shape minimizing a certain surface tension functional. According to the boundary conditions, the macroscopic shape can be either analytic or contain "frozen regions" (Arctic Circle phenomenon Cohn et al. N Y J Math 4:137-165, 1998; Jockusch et al. Random domino tilings and the arctic circle theorem, arXiv:math/9801068, 1998). It is widely conjectured, on the basis of theoretical considerations (Henley J Statist Phys 89:483-507, 1997; Spohn J Stat Phys 71:1081-1132, 1993), partial mathematical results (Caputo et al. Commun Math Phys 311:157-189, 2012; Wilson Ann Appl Probab 14:274-325, 2004) and numerical simulations for similar models (Destainville Phys Rev Lett 88: 030601, 2002; cf. also the bibliography in Henley (J Statist Phys 89: 483-507, 1997) and Wilson (Ann Appl Probab 14: 274-325, 2004), that the Glauber dynamics approaches the equilibrium macroscopic shape in a time of order L2+o(1). In this work we prove this conjecture, under the assumption that the macroscopic equilibrium shape contains no "frozen region".
引用
收藏
页码:1287 / 1326
页数:40
相关论文
共 50 条
  • [1] Lozenge Tilings, Glauber Dynamics and Macroscopic Shape
    Benoît Laslier
    Fabio Lucio Toninelli
    [J]. Communications in Mathematical Physics, 2015, 338 : 1287 - 1326
  • [2] Hydrodynamic Limit Equation for a Lozenge Tiling Glauber Dynamics
    Laslier, Benoit
    Toninelli, Fabio Lucio
    [J]. ANNALES HENRI POINCARE, 2017, 18 (06): : 2007 - 2043
  • [3] Hydrodynamic Limit Equation for a Lozenge Tiling Glauber Dynamics
    Benoît Laslier
    Fabio Lucio Toninelli
    [J]. Annales Henri Poincaré, 2017, 18 : 2007 - 2043
  • [4] Signed lozenge tilings
    Cook, D., II
    Nagel, Uwe
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (01):
  • [5] Distances on Lozenge Tilings
    Bodini, Olivier
    Fernique, Thomas
    Remila, Eric
    [J]. DISCRETE GEOMETRY FOR COMPUTER IMAGERY, PROCEEDINGS, 2009, 5810 : 240 - +
  • [6] Asymptotics for the number of standard tableaux of skew shape and for weighted lozenge tilings
    Morales, Alejandro H.
    Pak, Igor
    Tassy, Martin
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2022, 31 (04): : 550 - 573
  • [7] Lozenge Tilings with Free Boundaries
    Panova, Greta
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2015, 105 (11) : 1551 - 1586
  • [8] Lozenge Tilings with Free Boundaries
    Greta Panova
    [J]. Letters in Mathematical Physics, 2015, 105 : 1551 - 1586
  • [9] Lozenge Tilings and Hurwitz Numbers
    Jonathan Novak
    [J]. Journal of Statistical Physics, 2015, 161 : 509 - 517
  • [10] Lozenge Tilings and Hurwitz Numbers
    Novak, Jonathan
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (02) : 509 - 517