Towards scalable view-invariant gait recognition: Multilinear analysis for gait

被引:0
|
作者
Lee, CS
Elgammal, A
机构
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we introduce a novel approach for learning view-invariant gait representation that does not require synthesizing particular views or any camera calibration. Given walking sequences captured from multiple views for multiple people, we fit a multilinear generative model using higher-order singular value decomposition which decomposes view factors, body configuration factors, a and gait-style factors. Gait-style is a view-invariant, time-invariant, and speed-invariant gait signature that can then be used in recognition. In the recognition phase, a new walking cycle of unknown person in unknown view is automatically aligned to the learned model and then iterative procedure is used to solve for both the gait-style parameter and the view. The proposed framework allows for scalability to add a new person to already learned model even if a single cycle of a single view is available.
引用
收藏
页码:395 / 405
页数:11
相关论文
共 50 条
  • [1] Robust view-invariant multiscale gait recognition
    Das Choudhury, Sruti
    Tjahjadi, Tardi
    [J]. PATTERN RECOGNITION, 2015, 48 (03) : 798 - 811
  • [2] View-Invariant Gait Recognition via Deterministic Learning
    Zeng, Wei
    Wang, Cong
    [J]. PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 3465 - 3472
  • [3] View-invariant gait recognition via deterministic learning
    Zeng, Wei
    Wang, Cong
    [J]. NEUROCOMPUTING, 2016, 175 : 324 - 335
  • [4] Learning Optimised Representations for View-invariant Gait Recognition
    Jia, Ning
    Sanchez, Victor
    Li, Chang-Tsun
    [J]. 2017 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB), 2017, : 774 - 780
  • [5] On view-invariant gait recognition: a feature selection solution
    Jia, Ning
    Sanchez, Victor
    Li, Chang-Tsun
    [J]. IET BIOMETRICS, 2018, 7 (04) : 287 - 295
  • [6] Fast and Robust Framework for View-invariant Gait Recognition
    Jia, Ning
    Li, Chang-Tsun
    Sanchez, Victor
    Liew, Alan Wee-Chung
    [J]. 2017 5TH INTERNATIONAL WORKSHOP ON BIOMETRICS AND FORENSICS (IWBF 2017), 2017,
  • [7] Joint Subspace Learning for View-Invariant Gait Recognition
    Liu, Nini
    Lu, Jiwen
    Tan, Yap-Peng
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2011, 18 (07) : 431 - 434
  • [8] A New View-Invariant Feature for Cross-View Gait Recognition
    Kusakunniran, Worapan
    Wu, Qiang
    Zhang, Jian
    Ma, Yi
    Li, Hongdong
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2013, 8 (10) : 1642 - 1653
  • [9] View-invariant gait recognition system using a gait energy image decomposition method
    Verlekar, Tanmay T.
    Correia, Paulo L.
    Soares, Luis D.
    [J]. IET BIOMETRICS, 2017, 6 (04) : 299 - 306
  • [10] View-Invariant Gait Recognition Through Genetic Template Segmentation
    Isaac, Ebenezer R. H. P.
    Elias, Susan
    Rajagopalan, Srinivasan
    Easwarakumar, K. S.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (08) : 1188 - 1192