Estimating population effects of vaccination using large, routinely collected data

被引:8
|
作者
Halloran, M. Elizabeth [1 ,2 ]
Hudgens, Michael G. [3 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, Ctr Inference & Dynam Infect Dis, 1124 Columbia St, Seattle, WA 98104 USA
[2] Univ Washington, Sch Publ Hlth, Dept Biostat, Seattle, WA 98195 USA
[3] Univ North Carolina Chapel Hill, Gillings Sch Global Publ Hlth, Dept Biostat, Chapel Hill, NC USA
关键词
causal inference; dependent happenings; herd immunity; indirect effects; potential outcome; surveillance; vaccination; EFFICACY;
D O I
10.1002/sim.7392
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Vaccination in populations can have several kinds of effects. Establishing that vaccination produces population-level effects beyond the direct effects in the vaccinated individuals can have important consequences for public health policy. Formal methods have been developed for study designs and analysis that can estimate the different effects of vaccination. However, implementing field studies to evaluate the different effects of vaccination can be expensive, of limited generalizability, or unethical. It would be advantageous to use routinely collected data to estimate the different effects of vaccination. We consider how different types of data are needed to estimate different effects of vaccination. The examples include rotavirus vaccination of young children, influenza vaccination of elderly adults, and a targeted influenza vaccination campaign in schools. Directions for future research are discussed. Copyright (c) 2017 John Wiley & Sons, Ltd.
引用
收藏
页码:294 / 301
页数:8
相关论文
共 50 条
  • [1] Estimating Population-Level Effects of the Acellular Pertussis Vaccine Using Routinely Collected Immunization Data
    Rane, Madhura S.
    Halloran, M. Elizabeth
    [J]. CLINICAL INFECTIOUS DISEASES, 2021, 73 (11) : 2101 - 2107
  • [2] Estimating influenza vaccine effectiveness using routinely collected laboratory data
    Fleming, D. M.
    Andrews, N. J.
    Ellis, J. S.
    Bermingham, A.
    Sebastianpillai, P.
    Elliot, A. J.
    Miller, E.
    Zambon, M.
    [J]. JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH, 2010, 64 (12): : 1062 - 1067
  • [3] Estimating phytoplankton stoichiometry from routinely collected monitoring data
    Yuan, Lester L.
    Jones, John R.
    [J]. BIOGEOCHEMISTRY, 2022, 159 (02) : 251 - 264
  • [4] Estimating phytoplankton stoichiometry from routinely collected monitoring data
    Lester L. Yuan
    John R. Jones
    [J]. Biogeochemistry, 2022, 159 : 251 - 264
  • [5] Estimating progression-free survival in patients with glioblastoma using routinely collected data
    Kelly, Charlotte
    Majewska, Paulina
    Ioannidis, Stefanos
    Raza, Muhammad Hasan
    Williams, Matt
    [J]. JOURNAL OF NEURO-ONCOLOGY, 2017, 135 (03) : 621 - 627
  • [6] Estimating the prevalence of fetal alcohol syndrome in Victoria using routinely collected administrative data
    Allen, Kelly
    Riley, Merilyn
    Goldfeld, Sharon
    Halliday, Jane
    [J]. AUSTRALIAN AND NEW ZEALAND JOURNAL OF PUBLIC HEALTH, 2007, 31 (01) : 62 - 66
  • [7] Estimating progression-free survival in patients with glioblastoma using routinely collected data
    Charlotte Kelly
    Paulina Majewska
    Stefanos Ioannidis
    Muhammad Hasan Raza
    Matt Williams
    [J]. Journal of Neuro-Oncology, 2017, 135 : 621 - 627
  • [8] Modeling the effects of epidemics on routinely collected data
    Zeng, XM
    Wagner, M
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2001, : 781 - 785
  • [9] Modeling the effects of epidemics on routinely collected data
    Zeng, XM
    Wagner, M
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2002, 9 (06) : S17 - S22
  • [10] USING ROUTINELY COLLECTED DATA FOR CLINICAL RESEARCH
    SAFRAN, C
    [J]. STATISTICS IN MEDICINE, 1991, 10 (04) : 559 - 564