Almost Everywhere Convergence of Fejer Means of Two-dimensional Triangular Walsh-Fourier Series

被引:8
|
作者
Gat, Gyoergy [1 ]
机构
[1] Univ Debrecen, Inst Math, Pf 400, H-4002 Debrecen, Hungary
关键词
Fejer means; Triangle Walsh-Paley-Fourier series; a; e; convergence; 42C10; SUMMABILITY; DIVERGENCE;
D O I
10.1007/s00041-017-9566-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1987 Harris proved ( ProcAmMath Soc 101( 4): 637- 643, 1987)- among others- that for each 1 = p < 2 there exists a two- dimensional function f. L p such that its triangular Walsh- Fourier series diverges almost everywhere. In this paper we investigate the Fejer ( or ( C, 1)) means of the triangle two variableWalsh- Fourier series of L1 functions. Namely, we prove the a. e. convergence s n f = 1 n n- 1 k= 0 Sk, n- k f. f ( n.8) for each integrable two- variable function f
引用
收藏
页码:1249 / 1275
页数:27
相关论文
共 50 条