Analytical solutions to multi-term time-space Caputo-Riesz fractional diffusion equations on an infinite domain

被引:7
|
作者
Sin, Chung-Sik [1 ]
Ri, Gang-Il [1 ]
Kim, Mun-Chol [1 ]
机构
[1] Kim Il Sung Univ, Fac Math, Pyongyang, Taesong Distric, North Korea
关键词
analytical solution; Caputo fractional derivative; Riesz fractional derivative; multi-term fractional diffusion equation; multivariate Mittag-Leffler function; ANOMALOUS DIFFUSION; GUIDE;
D O I
10.1186/s13662-017-1369-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper deals with the Cauchy problem for the multi-term time-space fractional diffusion equation in one dimensional space. The time fractional derivatives are defined as Caputo fractional derivatives and the space fractional derivative is defined in the Riesz sense. Firstly the domain of the fractional Laplacian is extended to a Banach space. Then the analytical solutions are established by using the Luchko theorem and the multivariate Mittag-Leffler function.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Analytical solutions to multi-term time-space Caputo-Riesz fractional diffusion equations on an infinite domain
    Chung-Sik Sin
    Gang-Il Ri
    Mun-Chol Kim
    [J]. Advances in Difference Equations, 2017
  • [2] Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain
    Jiang, H.
    Liu, F.
    Turner, I.
    Burrage, K.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (02) : 1117 - 1127
  • [3] Analytical solutions for the multi-term time-space fractional reaction-diffusion equations on an infinite domain
    Xiao-Li Ding
    Juan J. Nieto
    [J]. Fractional Calculus and Applied Analysis, 2015, 18 : 697 - 716
  • [4] ANALYTICAL SOLUTIONS FOR THE MULTI-TERM TIME-SPACE FRACTIONAL REACTION-DIFFUSION EQUATIONS ON AN INFINITE DOMAIN
    Ding, Xiao-Li
    Nieto, Juan J.
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) : 697 - 716
  • [5] A Separable Preconditioner for Time-Space Fractional Caputo-Riesz Diffusion Equations
    Lin, Xuelei
    Ng, Michael K.
    Sun, Haiwei
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11 (04) : 827 - 853
  • [6] A high-order scheme for time-space fractional diffusion equations with Caputo-Riesz derivatives
    Sayyar, Golsa
    Hosseini, Seyed Mohammad
    Mostajeran, Farinaz
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 104 : 34 - 43
  • [7] Fully Finite Element Adaptive AMG Method for Time-Space Caputo-Riesz Fractional Diffusion Equations
    Yue, X. Q.
    Bu, W. P.
    Shu, S.
    Liu, M. H.
    Wang, S.
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2018, 10 (05) : 1103 - 1125
  • [8] IMPROVEMENT OF THE SPECTRAL METHOD FOR SOLVING MULTI-TERM TIME-SPACE RIESZ-CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS
    Dehestani, H.
    Ordokhani, Y.
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (06): : 2600 - 2620
  • [9] Maximum principle and numerical method for the multi-term time-space Riesz-Caputo fractional differential equations
    Ye, H.
    Liu, F.
    Anh, V.
    Turner, I.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 227 : 531 - 540
  • [10] Analytical solutions for the multi-term time-space fractional advection-diffusion equations with mixed boundary conditions
    Ding, Xiao-Li
    Jiang, Yao-Lin
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (02) : 1026 - 1033