In Situ Probing of the Mechanisms of Coking Resistance on Catalyst-Modified Anodes for Solid Oxide Fuel Cells

被引:61
|
作者
Li, Xiaxi [1 ]
Liu, Mingfei [1 ]
Lai, Samson Y. [1 ]
Ding, Dong [1 ]
Gong, Mingyang [1 ]
Lee, Jung-Pil [1 ,2 ]
Blinn, Kevin S. [1 ]
Bu, Yunfei [1 ]
Wang, Zhihong [1 ]
Bottomley, Lawrence A. [3 ]
Alamgir, Faisal M. [1 ]
Liu, Meilin [1 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Ctr Innovat Fuel Cell & Battery Technol, Atlanta, GA 30332 USA
[2] UNIST, Ctr Innovat Battery Technol, Interdisciplinary Sch Green Energy & Converging R, Ulsan 689798, South Korea
[3] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
ENHANCED RAMAN-SPECTROSCOPY; CARBON REMOVAL; SURFACE; METHANE;
D O I
10.1021/cm503852v
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Coking is a major cause of performance degradation of Ni-based anodes in solid oxide fuel cells (SOFCs) powered by carbon-containing fuels. While modification of Ni surfaces using a thin coating of BaO, BaZr(0.9)Y(0.1)O(3)d (BZY), and BaZr(0.1)Ce(0.7)Y(0.1)Yb(0.1)O(3)d (BZCYYb) was reported to alleviate the problem, the mechanism is yet to be understood. In this study, in situ Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are used to probe the surface chemistry of BaO, BZY, and BZCYYb. Analyses of the time-resolved spectral features of CC bonds, -OH groups, and -CO3 groups reveal the interactions between surface functional groups and gas species (hydrocarbon, water steam, and CO2). While the switching from -OH to -CO3 groups is irreversible on BaO surfaces, it becomes reversible on both BZY and BZCYYb surfaces. Although the -OH mediated carbon removal is observed on the surfaces of all three catalysts, the -CO3 is found effective for carbon removal only on the BZCYYb surface.
引用
收藏
页码:822 / 828
页数:7
相关论文
共 50 条
  • [1] Heterogeneous Catalyst-Modified Anode in Solid Oxide Fuel Cells for Simultaneous Ammonia Synthesis and Energy Conversion
    Rahumi, Or
    Rath, Manasa Kumar
    Kossenko, Alexey
    Zinigrad, Michael
    Borodianskiy, Konstantin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (38): : 14081 - 14093
  • [2] Ni modified ceramic anodes for solid oxide fuel cells
    Xiao, Guoliang
    Jin, Chao
    Liu, Qiang
    Heyden, Andreas
    Chen, Fanglin
    JOURNAL OF POWER SOURCES, 2012, 201 : 43 - 48
  • [3] Single-chamber solid oxide fuel cells with nanocatalyst-modified anodes capable of in situ activation
    Yang, Guangming
    Su, Chao
    Wang, Wei
    Ran, Ran
    Tade, Moses O.
    Shao, Zongping
    JOURNAL OF POWER SOURCES, 2014, 264 : 220 - 228
  • [4] Nanostructured anodes for solid oxide fuel cells
    Gorte, R. J.
    Vohs, J. M.
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2009, 14 (04) : 236 - 244
  • [5] Ni modified ceramic anodes for direct-methane solid oxide fuel cells
    Xiao, Guoliang
    Chen, Fanglin
    ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (01) : 57 - 59
  • [6] Direct Power Generation from Low Concentration Coal-Bed Gas by a Catalyst-Modified Solid Oxide Fuel Cell
    Chen, Huili
    Wu, Yufang
    Yang, Guangming
    Shi, Jing
    Zhou, Wei
    Bai, Jianping
    Li, Si-Dian
    Shao, Zongping
    CHEMELECTROCHEM, 2018, 5 (11): : 1459 - 1466
  • [7] Development of novel anodes for solid oxide fuel cells
    Irvine, JTS
    Fagg, DP
    Labrincha, J
    Marques, FMB
    CATALYSIS TODAY, 1997, 38 (04) : 467 - 472
  • [8] Redox stable anodes for solid oxide fuel cells
    Xiao, Guoliang
    Chen, Fanglin
    FRONTIERS IN ENERGY RESEARCH, 2014,
  • [9] Sulfur Tolerant Anodes for Solid Oxide Fuel Cells
    Elangovan, S.
    Hartvigsen, J.
    Frost, L.
    FUEL CELL SEMINAR 2007, 2008, 12 (01): : 323 - 331
  • [10] Designing a miniaturised heated stage for in situ optical measurements of solid oxide fuel cell electrode surfaces, and probing the oxidation of solid oxide fuel cell anodes using in situ Raman spectroscopy
    Brightman, E.
    Maher, R.
    Offer, G. J.
    Duboviks, V.
    Heck, C.
    Cohen, L. F.
    Brandon, N. P.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (05):