Kernels for products of Hilbert L-functions

被引:1
|
作者
Choie, YoungJu [1 ]
Zhang, Yichao [2 ,3 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Math, Pohang 790784, South Korea
[2] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, Inst Adv Studies Math, Harbin 150001, Peoples R China
关键词
Hilbert modular form; Special L-values; Cusp form; Double Eisenstein series; Petersson inner product; Rankin-Cohen bracket; Kernel function; MODULAR-FORMS;
D O I
10.1007/s00209-019-02355-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study kernel functions of L-functions and products of L-functions of Hilbert cusp forms over real quadratic fields. This extends the results on elliptic modular forms in Diamantis and O'Sullivan (Math Ann 346(4):897-929, 2010, Algebra Number Theory 7(8):1883-1917, 2013).
引用
收藏
页码:87 / 99
页数:13
相关论文
共 50 条
  • [1] Kernels for products of Hilbert L-functions
    YoungJu Choie
    Yichao Zhang
    Mathematische Zeitschrift, 2020, 295 : 87 - 99
  • [2] Hilbert Poincare series and kernels for products of L-functions
    Zhang, Mingkuan
    Zhang, Yichao
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2025, 21 (03) : 515 - 530
  • [3] Kernels for products of L-functions
    Diamantis, Nikolaos
    O'Sullivan, Cormac
    ALGEBRA & NUMBER THEORY, 2013, 7 (08) : 1883 - 1917
  • [4] FACTORING L-FUNCTIONS AS PRODUCTS OF L-FUNCTIONS
    GRENIER, D
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 345 (02) : 673 - 692
  • [5] Kernels of L-functions of cusp forms
    Nikolaos Diamantis
    Cormac O’Sullivan
    Mathematische Annalen, 2010, 346 : 897 - 929
  • [6] Kernels of L-functions of cusp forms
    Diamantis, Nikolaos
    O'Sullivan, Cormac
    MATHEMATISCHE ANNALEN, 2010, 346 (04) : 897 - 929
  • [7] KERNELS OF L-FUNCTIONS AND SHIFTED CONVOLUTIONS
    Diamantis, Nikolaos
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (12) : 5059 - 5070
  • [8] Hilbert spaces of entire functions and Dirichlet L-functions
    Lagarias, JC
    FRONTIERS IN NUMBER THEORY, PHYSICS AND GEOMETRY I: ON RANDOM MATRICES, ZETA FUNCTIONS, AND DYNAMICAL SYSTEMS, 2006, : 367 - 379
  • [9] Moments of products of automorphic L-functions
    Milinovich, Micah B.
    Turnage-Butterbaugh, Caroline L.
    JOURNAL OF NUMBER THEORY, 2014, 139 : 175 - 204
  • [10] A Polya-Hilbert operator for automorphic L-functions
    Deitmar, A
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2001, 12 (02): : 157 - 175