Maximum-Likelihood Asymptotic Inference for Autoregressive Hilbertian Processes

被引:0
|
作者
Ruiz-Medina, M. D. [1 ]
Espejo, R. M. [2 ]
机构
[1] Univ Granada, Fac Sci, Dept Stat & Operat Res, E-18071 Granada, Spain
[2] Univ Granada, Fac Sci, E-18071 Granada, Spain
关键词
Autoregressive Hilbertian processes; Central limit results; EM algorithm; Financial data; Maximum likelihood estimation; Missing functional data; Numerical projection methods; MODELS;
D O I
10.1007/s11009-013-9329-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The autoregressive Hilbertian process framework has been introduced in Bosq (2000). This book provides the nonparametric estimation of the autocorrelation and covariance operators of the autoregressive Hilbertian processes. The asymptotic properties of these estimators are also provided. The maximum likelihood approach still remains unexplored. This paper obtains the asymptotic distribution of the maximum likelihood (ML) estimators of the auto-covariance operator of the Hilbert-valued innovation process, and of the autocorrelation operator of a Gaussian autoregressive Hilbertian process of order one. A real data example is analyzed in the financial context for illustration of the performance of the projection maximum likelihood estimation methodology in the context of missing data.
引用
收藏
页码:207 / 222
页数:16
相关论文
共 50 条