Spoken document summarization using topic-related corpus and semantic dependency grammar

被引:0
|
作者
Hsieh, CH [1 ]
Huang, CL [1 ]
Wu, CH [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan 70101, Taiwan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study presents a spoken document summarization scheme using a topic-related corpus and semantic dependency grammars. The summarization score considers speech recognition confidence, word significance, word trigram, semantic dependency grammar (SDG) and probabilistic context free grammar (PCFG). In addition, a topic-related corpus consisting of keywords as well as article is used to estimate the word significance score using latent semantic indexing (LSI). Semantic relations between words are determined by SDG using HowNet and Sinica Treebank. The dynamic programming algorithm is applied to decide the summarization ratio and look for the best summarization result according to summarization scores. Experimental results indicate that the proposed approach effectively extracts important words with semantic dependency and gives a promising speech summary.
引用
收藏
页码:333 / 336
页数:4
相关论文
共 50 条
  • [1] Collaborative Summarization of Topic-Related Videos
    Panda, Rameswar
    Roy-Chowdhury, Amit K.
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4274 - 4283
  • [2] Spoken document summarization using acoustic, prosodic and semantic information
    Huang, CL
    Hsieh, CH
    Wu, CH
    2005 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), VOLS 1 AND 2, 2005, : 434 - 437
  • [4] Improved spoken document summarization using Probabilistic Latent Semantic Analysis (PLSA)
    Kong, Sheng-Yi
    Lee, Lin-shan
    2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 941 - 944
  • [5] Spoken document summarization using relevant information
    Chen, Yi-Ting
    Lin, Shih-Hsiang
    Wang, Hsin-Min
    Chen, Berlin
    2007 IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING, VOLS 1 AND 2, 2007, : 189 - +
  • [6] Topic Oriented Multi-document Summarization Using LSA, Syntactic and Semantic Features
    Anjaneyulu, M.
    Sarma, S. S. V. N.
    Reddy, P. Vijaya Pal
    Chander, K. Prem
    Nagaprasad, S.
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, VOL 2, 2019, 56 : 487 - 502
  • [7] Document Summarization Using Semantic Clouds
    Rinaldi, Antonio M.
    2013 IEEE SEVENTH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC 2013), 2013, : 100 - 103
  • [8] Using Topic Themes for Multi-Document Summarization
    Harabagiu, Sanda
    Lacatusu, Finley
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2010, 28 (03)
  • [9] Semantic Search and Summarization of Judgments Using Topic Modeling
    Wu, Tien-Hsuan
    Kao, Ben
    Chan, Felix
    Cheung, Anne S. Y.
    Cheung, Michael M. K.
    Yuan, Guowen
    Chen, Yongxi
    LEGAL KNOWLEDGE AND INFORMATION SYSTEMS, 2021, 346 : 100 - 106
  • [10] Lexical diversity in an L2 Spanish learner corpus: The effect of topic-related variables
    Fernandez-Mira, Paloma
    Morgan, Emily
    Davidson, Sam
    Yamada, Aaron
    Carando, Agustina
    Sagae, Kenji
    Sanchez-Gutierrez, Claudia H.
    INTERNATIONAL JOURNAL OF LEARNER CORPUS RESEARCH, 2021, 7 (02) : 230 - 258