Comparison of splitting algorithms for the rigid body

被引:16
|
作者
Fassò, F [1 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Appl, I-35131 Padua, Italy
关键词
symplectic integrators; splitting methods; numerical integration of rigid bodies;
D O I
10.1016/S0021-9991(03)00232-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We compare several different second-order splitting algorithms for the asymmetric rigid body, with the aim of determining which one produces the smallest energy error for a given rigid body, namely, for given moments of inertia. The investigation is based on the analysis of the dominant term of the modified Hamiltonian and indicates that different algorithms can produce energy errors which differ by several orders of magnitude. As a byproduct of this analysis we remark that, for the special case of a flat rigid body with moments of inertia proportional to (1, 0.75 0.25), one of the considered algorithms is in fact of order four. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:527 / 538
页数:12
相关论文
共 50 条
  • [1] Processed splitting algorithms for rigid-body molecular dynamics simulations
    Omelyan, Igor P.
    [J]. PHYSICAL REVIEW E, 2008, 78 (02):
  • [2] A symmetric splitting method for rigid body dynamics
    Celledoni, E.
    Safstrom, N.
    [J]. MODELING IDENTIFICATION AND CONTROL, 2006, 27 (02) : 95 - 108
  • [3] Efficient algorithms for rigid body integration using optimized splitting methods and exact free rotational motion
    van Zon, Ramses
    Omelyan, Igor P.
    Schofield, Jeremy
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (13):
  • [4] Estimating 3-D rigid body transformations: A comparison of four major algorithms
    Eggert, DW
    Lorusso, A
    Fischer, RB
    [J]. MACHINE VISION AND APPLICATIONS, 1997, 9 (5-6) : 272 - 290
  • [5] Estimating 3-D rigid body transformations: a comparison of four major algorithms
    D.W. Eggert
    A. Lorusso
    R.B. Fisher
    [J]. Machine Vision and Applications, 1997, 9 : 272 - 290
  • [6] Symplectic splitting methods for rigid body molecular dynamics
    Dullweber, A
    Leimkuhler, B
    McLachlan, R
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (15): : 5840 - 5851
  • [7] Analytical Derivatives of Rigid Body Dynamics Algorithms
    Carpentier, Justin
    Mansard, Nicolas
    [J]. ROBOTICS: SCIENCE AND SYSTEMS XIV, 2018,
  • [8] Passivity-preserving splitting methods for rigid body systems
    Elena Celledoni
    Eirik Hoel Høiseth
    Nataliya Ramzina
    [J]. Multibody System Dynamics, 2018, 44 : 251 - 275
  • [9] Passivity-preserving splitting methods for rigid body systems
    Celledoni, Elena
    Hoiseth, Eirik Hoel
    Ramzina, Nataliya
    [J]. MULTIBODY SYSTEM DYNAMICS, 2018, 44 (03) : 251 - 275
  • [10] EXPLICIT MOMENTUM CONSERVING ALGORITHMS FOR RIGID BODY DYNAMICS
    HULBERT, GM
    [J]. COMPUTERS & STRUCTURES, 1992, 44 (06) : 1291 - 1303