Boundary feedback stabilization of hydraulic jumps

被引:7
|
作者
Bastin, Georges [1 ]
Coron, Jean-Michel [2 ]
Hayat, Amaury [2 ]
Shang, Peipei [3 ]
机构
[1] Univ Louvain, Dept Math Engn, ICTEAM, Louvain La Neuve, Belgium
[2] Sorbonne Univ, Univ Paris Diderot SPC, Lab Jacques Louis Lions, Equipe Cage,CNRS,INRIA, Paris, France
[3] Tongji Univ, Sch Math Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Saint-Venant equations; Boundary feedback controls; Hydraulic jump;
D O I
10.1016/j.ifacsc.2019.100026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In an open channel, a hydraulic jump is an abrupt transition between a torrential (supercritical) flow and a fluvial (subcritical) flow. In this article hydraulic jumps are represented by discontinuous shock solutions of hyperbolic Saint-Venant equations. Using a Lyapunov approach, we prove that we can stabilize the state of the system in H-2-norm as well as the hydraulic jump location, with simple feedback boundary controls and an arbitrary decay rate, by appropriately choosing the gains of the feedback boundary controls. (c) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Circular hydraulic jumps triggered by boundary layer separation
    Chang, HC
    Demekhin, EA
    Takhistov, PV
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2001, 233 (02) : 329 - 338
  • [2] Boundary feedback stabilization of the Schlogl system
    Gugat, Martin
    Troeltzsch, Fredi
    [J]. AUTOMATICA, 2015, 51 : 192 - 199
  • [3] BOUNDARY FEEDBACK STABILIZATION OF THE MONODOMAIN EQUATIONS
    Breiten, Tobias
    Kunisch, Karl
    [J]. MATHEMATICAL CONTROL AND RELATED FIELDS, 2017, 7 (03) : 369 - 391
  • [4] On the Stabilization of A Flexible Cable with Boundary Feedback
    Augustin, Tour K.
    Patrice, Mensah E.
    Mathurin, Taha M.
    [J]. COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2011, 2 (2-3): : 111 - 129
  • [5] Boundary feedback stabilization of shallow shells
    Chai, SG
    Guo, YX
    Yao, PF
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (01) : 239 - 259
  • [6] BOUNDARY FEEDBACK STABILIZATION OF BOUSSINESQ EQUATIONS
    Liu, Hanbing
    Xiao, Haijun
    [J]. ACTA MATHEMATICA SCIENTIA, 2018, 38 (06) : 1881 - 1902
  • [7] BOUNDARY FEEDBACK STABILIZATION OF BOUSSINESQ EQUATIONS
    刘汉兵
    肖海军
    [J]. Acta Mathematica Scientia, 2018, (06) : 1881 - 1902
  • [8] Boundary feedback stabilization of Timoshenko beam with boundary dissipation
    Feng, DX
    Shi, DH
    Zhang, WT
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (05): : 483 - 490
  • [9] Boundary feedback stabilization of Timoshenko beam with boundary dissipation
    Dexing Feng
    Donghua Shi
    Weitao Zhang
    [J]. Science in China Series A: Mathematics, 1998, 41 : 483 - 490
  • [10] Optimal boundary feedback stabilization of a string with moving boundary
    Gugat, Martin
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2008, 25 (01) : 111 - 121