Synergy between Mn and Co in Mn/CoOx cocatalyst for enhanced photoelectrochemical water oxidation of hematite photoanode

被引:26
|
作者
Xing, Xiu-Shuang [1 ]
Bao, Mengru [1 ]
Wang, Pengchen [1 ]
Wang, Xiaolu [1 ]
Wang, Yatong [1 ]
Du, Jimin [1 ]
机构
[1] Anyang Normal Univ, Coll Chem & Chem Engn, Henan Key Lab New Optoelect Funct Mat, Anyang 455000, Peoples R China
基金
中国国家自然科学基金;
关键词
Photoelectrochemical water oxidation; Hematite photoanode; Cocatalyst; Synergic effect; OXYGEN EVOLUTION; PERFORMANCE; NANOLAYERS;
D O I
10.1016/j.apsusc.2021.151472
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hematite (alpha-Fe2O3) photoanode is regarded widely as one of most promising photoanode candidates for photoelectrochemical (PEC) water splitting, while the poor surface reaction kinetics and severe charge recombination hinder its further application. Herein, a bimetallic Mn/CoOx film, prepared by high-temperature annealing of metal-organic frameworks (MOFs), is designed as an efficient cocatalyst to modify alpha-Fe2O3 photoanode (FTO/Sn@alpha-Fe2O3-Mn/CoOx) for PEC water oxidation. With an optimized content of Mn/CoOx cocatalyst, the FTO/Sn@alpha-Fe2O3-Mn/CoOx photoanode exhibits an excellent photocurrent density of 2.66 mA/cm2 at 1.23 VRHE , which is higher than that of CoOx (1.43 mA/cm2) or MnOx (1.86 mA/cm2) single-metal catalyst. The on-set potential achieves a remarkable cathodic shift of 0.11 V. The detailed mechanism studies demonstrate that the electron donation from Mn/CoOx cocatalyst to alpha-Fe2O3 photoanode can obtain high oxidation state of Mn and Co to enhance photogenerated carriers separation efficiency, reduce recombination and facilitate the OH- transformation, which synergically increases the catalytic activities of FTO/Sn@alpha-Fe2O3-Mn/CoOx photoanode for PEC water oxidation. Furthermore, a heterojunction, formed by Mn/CoOx doping in the surface alpha-Fe2O3, can further enhance the photogenerated carriers separation efficiency. This work provides valuable guidance for the design and construction of bimetallic cocatalyst on various photoelectrodes for outstanding PEC water splitting performance.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [1] Exfoliated NiFe Layered Double Hydroxide Cocatalyst for Enhanced Photoelectrochemical Water Oxidation with Hematite Photoanode
    Park, Yoon Bin
    Kim, Ju Hun
    Jang, Youn Jeong
    Lee, Jin Ho
    Lee, Min Hee
    Lee, Byeong Jun
    Youn, Duck Hyun
    Lee, Jae Sung
    CHEMCATCHEM, 2019, 11 (01) : 443 - 448
  • [2] Alkali Treatment for Enhanced Photoelectrochemical Water Oxidation on Hematite Photoanode
    Zhang, Xueliang
    Wang, Xin
    Yi, Xinli
    Ye, Jinhua
    Wang, Defa
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (05): : 5420 - 5429
  • [3] Load CoOx cocatalyst on photoanode by spin coating and calcination for enhanced photoelectrochemical water oxidation: A case study on BiVO4
    Huang, Jingwei
    Tian, Yue
    Wang, Yani
    Liu, Tingting
    JOURNAL OF SOLID STATE CHEMISTRY, 2021, 299
  • [4] Facial boron incorporation in hematite photoanode for enhanced photoelectrochemical water oxidation
    Liu, Anan
    Zhang, Yuchao
    Ma, Wanhong
    Song, Wenjing
    Chen, Chuncheng
    Zhao, Jincai
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2018, 355 : 290 - 297
  • [5] A morphology effect of hematite photoanode for photoelectrochemical water oxidation
    Liu, Zilong
    Wang, Kexin
    Xiao, Li
    Chen, Xuejiao
    Ren, Xiaodi
    Lu, Juntao
    Zhuang, Lin
    RSC ADVANCES, 2014, 4 (71) : 37701 - 37704
  • [6] CoFe Amorphous Double Hydroxides Modified Hematite Photoanode with the Synergism of Co and Fe for Enhanced Photoelectrochemical Water Oxidation
    Chang, Yue
    Han, Minmin
    Wang, Yang
    Ding, Yehui
    Huang, Fei
    CATALYSTS, 2023, 13 (09)
  • [7] Hematite nanofibers based photoanode for effective photoelectrochemical water oxidation
    Suryamathi, M.
    Ramachandran, K.
    Viswanathamurthi, P.
    Ramesh, R.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (12) : 9180 - 9193
  • [8] Hematite nanofibers based photoanode for effective photoelectrochemical water oxidation
    M. Suryamathi
    K. Ramachandran
    P. Viswanathamurthi
    R. Ramesh
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 9180 - 9193
  • [9] Ultrasonic passivated hematite photoanode with efficient hole transfer pathway for enhanced photoelectrochemical water oxidation
    Fangli Wu
    Yu Chang
    Wei Zhai
    Jianyuan Wang
    Journal of Materials Science, 2022, 57 : 14936 - 14947
  • [10] Ultrasonic passivated hematite photoanode with efficient hole transfer pathway for enhanced photoelectrochemical water oxidation
    Wu, Fangli
    Chang, Yu
    Zhai, Wei
    Wang, Jianyuan
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (31) : 14936 - 14947