Online Active Learning of Reject Option Classifiers

被引:0
|
作者
Shah, Kulin [1 ]
Manwani, Naresh [1 ]
机构
[1] IIT Hyderabad, Machine Learning Lab, KCIS, Hyderabad, India
关键词
CLASSIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Active learning is an important technique to reduce the number of labeled examples in supervised learning. Active learning for binary classification has been well addressed in machine learning. However, active learning of the reject option classifier remains unaddressed. In this paper, we propose novel algorithms for active learning of reject option classifiers. We develop an active learning algorithm using double ramp loss function. We provide mistake bounds for this algorithm. We also propose a new loss function called double sigmoid loss function for reject option and corresponding active learning algorithm. We offer a convergence guarantee for this algorithm. We provide extensive experimental results to show the effectiveness of the proposed algorithms. The proposed algorithms efficiently reduce the number of label examples required.
引用
收藏
页码:5652 / 5659
页数:8
相关论文
共 50 条
  • [1] Optimal Strategies for Reject Option Classifiers
    Franc, Vojtech
    Prusa, Daniel
    Voracek, Vaclav
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [2] Lasso type classifiers with a reject option
    Wegkamp, Marten
    ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 : 155 - 168
  • [3] Fuzzy Classifiers with a Two-Stage Reject Option
    Nojima, Yusuke
    Kawano, Koyo
    Shimahara, Hajime
    Vernon, Eric
    Masuyama, Naoki
    Ishibuchi, Hisao
    2023 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, FUZZ, 2023,
  • [4] Fast kernel classifiers with online and active learning
    Bordes, A
    Ertekin, S
    Weston, J
    Bottou, L
    JOURNAL OF MACHINE LEARNING RESEARCH, 2005, 6 : 1579 - 1619
  • [5] Learning with an embedded reject option
    Sundararajan, R
    Pal, AK
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2004, 2004, 3070 : 664 - 669
  • [6] Classifiers With a Reject Option for Early Time-Series Classification
    Hatami, Nima
    Chira, Camelia
    PROCEEDINGS OF THE 2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND ENSEMBLE LEARNING (CIEL), 2013, : 9 - 16
  • [7] The interaction between classification and reject performance for distance-based reject-option classifiers
    Landgrebe, Thomas C. W.
    Tax, David M. J.
    Paclik, Pavel
    Duin, Robert P. W.
    PATTERN RECOGNITION LETTERS, 2006, 27 (08) : 908 - 917
  • [8] Machine learning with a reject option: a survey
    Kilian Hendrickx
    Lorenzo Perini
    Dries Van der Plas
    Wannes Meert
    Jesse Davis
    Machine Learning, 2024, 113 : 3073 - 3110
  • [9] On-line Learning With Reject Option
    Perez, G. J.
    Santibanez, M.
    Valdovinos, R. M.
    Marcial, J. R.
    Romero, M.
    Alejo, R.
    IEEE LATIN AMERICA TRANSACTIONS, 2018, 16 (01) : 279 - 286
  • [10] Machine learning with a reject option: a survey
    Hendrickx, Kilian
    Perini, Lorenzo
    van der Plas, Dries
    Meert, Wannes
    Davis, Jesse
    MACHINE LEARNING, 2024, 113 (05) : 3073 - 3110