Bose-Hubbard model for universal quantum-walk-based computation

被引:18
|
作者
Underwood, Michael S. [1 ]
Feder, David L. [1 ]
机构
[1] Univ Calgary, Inst Quantum Informat Sci, Calgary, AB T2N 1N4, Canada
来源
PHYSICAL REVIEW A | 2012年 / 85卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
SINGLE ATOMS; ENTANGLEMENT; GENERATION; SUPERFLUID; INSULATOR; ARRAYS; TIME; GAS;
D O I
10.1103/PhysRevA.85.052314
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a scheme for universal quantum computation based on spinless interacting bosonic quantum walkers on a piecewise-constant graph, described by the two-dimensional Bose-Hubbard model. Arbitrary X and Z rotations are constructed, as well as an entangling two-qubit CPHASE gate and a SWAP gate. Quantum information is encoded in the positions of the walkers on the graph, as in previous quantum walk-based proposals for universal quantum computation, though in contrast to prior schemes this proposal requires a number of vertices only linear in the number of encoded qubits. It allows single-qubit measurements to be performed in a straightforward manner with localized operators and can make use of existing quantum error-correcting codes either directly within the universal gate set provided or by extending the lattice to a third dimension. We present an intuitive example of a logical encoding to implement the seven-qubit Steane code. Finally, an implementation in terms of ultracold atoms in optical lattices is suggested.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Quantum chaos in the Bose-Hubbard model
    Kolovsky, AR
    Buchleitner, A
    [J]. EUROPHYSICS LETTERS, 2004, 68 (05): : 632 - 638
  • [2] Scalable quantum computation in systems with Bose-Hubbard dynamics
    Pupillo, G
    Rey, AN
    Brennen, G
    Williams, CJ
    Clark, CW
    [J]. JOURNAL OF MODERN OPTICS, 2004, 51 (16-18) : 2395 - 2404
  • [3] Effect of quantum correction in the Bose-Hubbard model
    Matsumoto, Hideki
    Takahashi, Kiyoshi
    Ohashi, Yoji
    [J]. LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 53 - +
  • [4] Multiparticle quantum walk-based error correction algorithm with two-lattice Bose-Hubbard model
    Wang, Shu-Mei
    Qu, Ying-Jie
    Wang, Hao-Wen
    Chen, Zhao
    Ma, Hong-Yang
    [J]. FRONTIERS IN PHYSICS, 2022, 10
  • [5] Quantum phases of the Bose-Hubbard model in optical superlattices
    Chen, Bo-Lun
    Kou, Su-Peng
    Zhang, Yunbo
    Chen, Shu
    [J]. PHYSICAL REVIEW A, 2010, 81 (05):
  • [6] Quantum glass phases in the disordered Bose-Hubbard model
    Sengupta, Pinaki
    Haas, Stephan
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (05)
  • [7] Optimal route to quantum chaos in the Bose-Hubbard model
    Pausch, Lukas
    Buchleitner, Andreas
    Carnio, Edoardo G.
    Rodriguez, Alberto
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (32)
  • [8] The dissipative Bose-Hubbard model
    Kordas, G.
    Witthaut, D.
    Buonsante, P.
    Vezzani, A.
    Burioni, R.
    Karanikas, A. I.
    Wimberger, S.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (11): : 2127 - 2171
  • [9] Dipolar Bose-Hubbard model
    Lake, Ethan
    Hermele, Michael
    Senthil, T.
    [J]. PHYSICAL REVIEW B, 2022, 106 (06)
  • [10] Artificial gauge fields for the Bose-Hubbard model on a checkerboard superlattice and extended Bose-Hubbard model
    Iskin, M.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (02):