Adaptive parameter setting for a multi-objective Particle Swarm Optimization algorithm

被引:9
|
作者
Zielinski, Karin [1 ]
Laur, Rainer [1 ]
机构
[1] Univ Bremen, ITEM, D-2800 Bremen 33, Germany
关键词
D O I
10.1109/CEC.2007.4424856
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To avoid the effort associated with choosing control parameter settings, an adaptive approach for parameter setting of a multi-objective Particle Swarm Optimization algorithm is presented in this work. The adaptive parameter control relies on methods from Design of Experiments which are able to detect significant performance variations of parameter settings. Furthermore, interaction effects of different parameters can be discovered. The adaptive control is applied to the parameters which are incorporated in the update equations of PSO, so the movement of particles is adapted based on feedback about successes during the search. The adaptive approach is evaluated using 13 test functions and several performance measures.
引用
收藏
页码:3019 / 3026
页数:8
相关论文
共 50 条
  • [1] Adaptive Multi-objective Particle Swarm Optimization algorithm
    Tripathi, P. K.
    Bandyopadhyay, Sanghamitra
    Pal, S. K.
    [J]. 2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 2281 - +
  • [2] Adaptive Niche Multi-Objective Particle Swarm Optimization Algorithm
    Li, Yinghai
    Zhou, Jianzhong
    Qin, Hui
    Lu, Youlin
    Yang, Junjie
    [J]. ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 1, PROCEEDINGS, 2008, : 418 - 422
  • [3] Modified Multi-Objective Particle Swarm Optimization Algorithm for Multi-objective Optimization Problems
    Qiao, Ying
    [J]. ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 520 - 527
  • [4] Multi-Objective Random Drift Particle Swarm Optimization Algorithm with Adaptive Grids
    Yuan, Yiqiong
    Sun, Jun
    Zhou, Dongmei
    [J]. 2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 2064 - 2070
  • [5] An improved multi-objective particle swarm optimization algorithm
    Zhang, Qiuming
    Xue, Siqing
    [J]. ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2007, 4683 : 372 - +
  • [6] A simplified multi-objective particle swarm optimization algorithm
    Vibhu Trivedi
    Pushkar Varshney
    Manojkumar Ramteke
    [J]. Swarm Intelligence, 2020, 14 : 83 - 116
  • [7] Constrained Multi-objective Particle Swarm Optimization Algorithm
    Gao, Yue-lin
    Qu, Min
    [J]. EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, 2012, 304 : 47 - 55
  • [8] Multi-Objective Mean Particle Swarm Optimization Algorithm
    Pei, Shengyu
    Zhou, Yongquan
    [J]. 2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 3315 - 3319
  • [9] A simplified multi-objective particle swarm optimization algorithm
    Trivedi, Vibhu
    Varshney, Pushkar
    Ramteke, Manojkumar
    [J]. SWARM INTELLIGENCE, 2020, 14 (02) : 83 - 116
  • [10] Multi-Objective Reactive Power Optimization Based On The Fuzzy Adaptive Particle Swarm Algorithm
    Wang Xiao-hua
    Zhang Yong-mei
    [J]. INTERNATIONAL WORKSHOP ON AUTOMOBILE, POWER AND ENERGY ENGINEERING, 2011, 16