Countable splitting graphs

被引:0
|
作者
Haverkamp, Nick [1 ]
机构
[1] Humboldt Univ, Inst Philosophie, D-10099 Berlin, Germany
关键词
splitting graph; splitting number; infinite graph;
D O I
10.4064/fm212-3-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is called splitting if there is a 0-1 labelling of its vertices such that for every infinite set C of natural numbers there is a sequence of labels along a 1-way infinite path in the graph whose restriction to C is not eventually constant. We characterize the countable splitting graphs as those containing a subgraph of one of three simple types.
引用
收藏
页码:217 / 233
页数:17
相关论文
共 50 条
  • [1] On the order of countable graphs
    Nesetril, J
    Shelah, S
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2003, 24 (06) : 649 - 663
  • [2] Countable α-extendable graphs
    Rullière, JL
    Thomassé, S
    [J]. DISCRETE MATHEMATICS, 2001, 239 (1-3) : 53 - 67
  • [3] MATCHINGS IN COUNTABLE GRAPHS
    STEFFENS, K
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1977, 29 (01): : 165 - 168
  • [4] On the existence of countable universal graphs
    Furedi, Z
    Komjath, P
    [J]. JOURNAL OF GRAPH THEORY, 1997, 25 (01) : 53 - 58
  • [5] RECURSIVE COLORATION OF COUNTABLE GRAPHS
    CARSTENS, HG
    PAPPINGHAUS, P
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 1983, 25 (01) : 19 - 45
  • [6] Increasing paths in countable graphs
    Arman, Andrii
    Elliott, Bradley
    Rodl, Vojtech
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 183
  • [7] Countable homogeneous multipartite graphs
    Jenkinson, Tristan
    Truss, J. K.
    Seidel, Daniel
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (01) : 82 - 109
  • [8] FAMILY OF COUNTABLE HOMOGENEOUS GRAPHS
    HENSON, CW
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1971, 38 (01) : 69 - &
  • [9] FAMILY OF COUNTABLE HOMOGENOUS GRAPHS
    HENSON, CW
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 92 - &
  • [10] Majority choosability of countable graphs
    Anholcer, Marcin
    Bosek, Bartlomiej
    Grytczuk, Jaroslaw
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2024, 117