ontoFAST: An R package for interactive and semi-automatic annotation of characters with biological ontologies

被引:2
|
作者
Tarasov, Sergei [1 ,2 ]
Miko, Istvan [3 ]
Yoder, Matthew Jon [4 ]
机构
[1] Finnish Museum Nat Hist, Helsinki, Finland
[2] Univ Tennessee, Natl Inst Math & Biol Synth, Knoxville, TN 37996 USA
[3] Univ New Hampshire, Durham, NH 03824 USA
[4] Illinois Nat Hist Survey, Champaign, IL 61820 USA
来源
METHODS IN ECOLOGY AND EVOLUTION | 2022年 / 13卷 / 02期
基金
芬兰科学院; 美国国家科学基金会;
关键词
annotation; character matrix; characters; ontology; phenomics; phenotypes; phylogenetics;
D O I
10.1111/2041-210X.13753
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Ontologies are becoming a fundamental technology for analysing phenotypic data. The commonly used Entity-Quality (EQ) provides rich semantics for annotating phenotypes and characters using ontologies. However, EQ syntax might be time inefficient if this granularity is unnecessary for downstream analysis. We present an R package ontoFAST that aids fast annotations of characters with biological ontologies. ontoFAST takes a biomedical ontology in OBO format and a list of characters as input, and produces a list of mappings from characters to ontology terms as output. The annotations produced by ontoFAST can be exported in CSV format for downstream analysis. Additionally, ontoFAST provides (a) functions for constructing simple queries of characters against ontologies and (b) helper function for exporting and visualizing complex ontological hierarchies and their relationships. ontoFAST enhances integration of ontological and phylogenetic methods and supports data interoperability between R applications. Ontology tools are underrepresented in R ecosystem and we hope that ontoFAST will stimulate their further development.
引用
收藏
页码:324 / 329
页数:6
相关论文
共 50 条
  • [1] An interactive tool for manual, semi-automatic and automatic video annotation
    Bianco, Simone
    Ciocca, Gianluigi
    Napoletano, Paolo
    Schettini, Raimondo
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2015, 131 : 88 - 99
  • [2] Semi-automatic image annotation
    Liu, WY
    Dumais, S
    Sun, YF
    Zhang, HJ
    Czerwinski, M
    Field, B
    [J]. HUMAN-COMPUTER INTERACTION - INTERACT'01, 2001, : 326 - 333
  • [3] Semi-automatic construction of topic ontologies
    Fortuna, Blaz
    Mladenic, Dunja
    Grobelnik, Marko
    [J]. SEMANTICS, WEB AND MINING, 2006, 4289 : 121 - 131
  • [4] Semi-automatic video content annotation
    Zhu, XQ
    Fan, JP
    Xue, XY
    Wu, L
    Elmagarmid, AK
    [J]. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2002, PROCEEDING, 2002, 2532 : 245 - 252
  • [5] Semi-automatic hardware design using ontologies
    Hu, H
    Liu, DY
    Du, XY
    [J]. 2004 8TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1-3, 2004, : 792 - 797
  • [6] Semi-automatic conversion of BioProp semantic annotation to PASBio annotation
    Richard Tzong-Han Tsai
    Hong-Jie Dai
    Chi-Hsin Huang
    Wen-Lian Hsu
    [J]. BMC Bioinformatics, 9
  • [7] Semi-automatic Hand Annotation of Egocentric Recordings
    De Beugher, Stijn
    Brone, Geert
    Goedeme, Toon
    [J]. COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, 2016, 598 : 338 - 355
  • [8] Semi-Automatic Annotation for Citation Function Classification
    Bakhti, Khadidja
    Niu, Zhendong
    Nyamawe, Ally S.
    [J]. 2018 INTERNATIONAL CONFERENCE ON CONTROL, ARTIFICIAL INTELLIGENCE, ROBOTICS & OPTIMIZATION (ICCAIRO), 2018, : 43 - 47
  • [9] Semi-automatic conversion of BioProp semantic annotation to PASBio annotation
    Tsai, Richard Tzong-Han
    Dai, Hong-Jie
    Huang, Chi-Hsin
    Hsu, Wen-Lian
    [J]. BMC BIOINFORMATICS, 2008, 9 (Suppl 12)
  • [10] A semi-automatic methodology for facial landmark annotation
    Sagonas, Cliristos
    Tzimiropoulos, Georgios
    Zafeiriou, Stefanos
    Pantic, Maja
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2013, : 896 - 903