Highly [010]-oriented, gradient Co-doped LiMnPO4 with enhanced cycling stability as cathode for Li-ion batteries

被引:17
|
作者
Wang, Ruijie [1 ]
Zheng, Jinyun [1 ]
Feng, Xiangming [1 ]
Yao, Ge [1 ]
Niu, Huiting [1 ]
Liu, Qingyi [1 ]
Chen, Weihua [1 ]
机构
[1] Zhengzhou Univ, Coll Chem, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium manganese phosphate; Cobalt doping; Surface-doped; Cathode material; Lithium-ion battery; Gradient material; HIGH-PERFORMANCE; ELECTROCHEMICAL PROPERTIES; SOLVOTHERMAL SYNTHESIS; ASSISTED SYNTHESIS; LOW-TEMPERATURE; LITHIUM; FACILE; NANOSTRUCTURE; COMPOSITES; NANORODS;
D O I
10.1007/s10008-019-04485-1
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
LiMnPO4 has been attracting attention for high energy density (701 Wh kg(-1)) and excellent safety. However, LiMnPO4 suffers from the cycling instability coming from the fragile solid electrolyte interface, besides the Jahn-Teller effect of Mn3+, the poor electrical conductivity and the sluggish ionic conductivity. The substitution of cation with less ionic radius for Mn2+ is conducive to stabilize the solid-electrolyte interface and retard the erosion from electrolyte; therefore, the gradient Co-doped LiMn0.98Co0.02PO4 was synthesized with 25.93 (mol) % Co on the surface by the secondary solvothermal method, and the permeated depth reaches more than 20 nm because of the coprecipitation and cation exchange of Co2+ and Mn2+. LiMn0.98Co0.02PO4/Li cell that demonstrates the cycling performance is remarkably enhanced with 87% capacity retention after 380 cycles at room temperature, even 87% after 100 cycles at 60 degrees C. Meanwhile, the preferential growth along the a-c plane results in the highly [010]-oriented LiMnPO4 by the solvothermal, which afford more channels for Li+ migration by exposing more reaction sites, and the infrared spectrum also reflects the less Mn2+-Li+ antisite defects in the crystal. So the samples show the superior rate performance as well.
引用
收藏
页码:511 / 519
页数:9
相关论文
共 50 条
  • [1] Highly [010]-oriented, gradient Co-doped LiMnPO4 with enhanced cycling stability as cathode for Li-ion batteries
    Ruijie Wang
    Jinyun Zheng
    Xiangming Feng
    Ge Yao
    Huiting Niu
    Qingyi Liu
    Weihua Chen
    Journal of Solid State Electrochemistry, 2020, 24 : 511 - 519
  • [2] Thermal stability and phase transformation of electrochemically charged/discharged LiMnPO4 cathode for Li-ion batteries
    Choi, Daiwon
    Xiao, Jie
    Choi, Young Joon
    Hardy, John S.
    Vijayakumar, M.
    Bhuvaneswari, M. S.
    Liu, Jun
    Xu, Wu
    Wang, Wei
    Yang, Zhenguo
    Graff, Gordon L.
    Zhang, Ji-Guang
    ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (11) : 4560 - 4566
  • [3] Synthesis and Electrochemical Behavior of Na+ and Zr4+ Doped LiMnPO4/C as Potential Cathode Material for Li-ion Batteries
    Han, ChenChen
    Yao, Xiang
    Tian, Hualing
    Cai, Yanjun
    Su, Zhi
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (07): : 1 - 10
  • [4] Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries
    Qin, Zhihong
    Zhou, Xufeng
    Xia, Yonggao
    Tang, Changlin
    Liu, Zhaoping
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (39) : 21144 - 21153
  • [5] Solvothermal synthesis of Fe-doping LiMnPO4 nanomaterials for Li-ion batteries
    Hu, Lingjun
    Qiu, Bao
    Xia, Yonggao
    Qin, Zhihong
    Qin, Laifen
    Zhou, Xufeng
    Liu, Zhaoping
    JOURNAL OF POWER SOURCES, 2014, 248 : 246 - 252
  • [6] Synthesis and electrochemical performance of Ti-Fe co-doped LiMnPO4/C as cathode material for lithium-ion batteries
    Huang, Qiao-Ying
    Wu, Zhi
    Su, Jing
    Long, Yun-Fei
    Lv, Xiao-Yan
    Wen, Yan-Xuan
    CERAMICS INTERNATIONAL, 2016, 42 (09) : 11348 - 11354
  • [7] Enhancing the Electrochemical Performance of Olivine LiMnPO4 as Cathode Materials for Li-Ion Batteries by Ni-Fe Codoping
    Oukahou, Said
    Maymoun, Mohammad
    Elomrani, Abdelali
    Sbiaai, Khalid
    Hasnaoui, Abdellatif
    ACS APPLIED ENERGY MATERIALS, 2022, : 10591 - 10603
  • [8] The potentials of LiMnPO4 cathode material for aqueous Li-ion batteries: An investigation into solid state and green chemistry approaches
    Nwachukwu, Iheke Michael
    Nwanya, Assumpta Chinwe
    Ekwealor, A. B. C.
    Ezema, Fabian I.
    APPLIED SURFACE SCIENCE ADVANCES, 2024, 19
  • [9] Hydrothermal synthesis of flower-like LiMnPO4 nanostructures self-assembled with (010) nanosheets and their application in Li-ion batteries
    Bao, Liang
    Xu, Gang
    Wang, Jiangwei
    Zong, Hong
    Li, Lingling
    Zhao, Ruoyu
    Zhou, Shaoxiong
    Shen, Ge
    Han, Gaorong
    CRYSTENGCOMM, 2015, 17 (33): : 6399 - 6405
  • [10] Single-source realization of Na-doped and carbon-coated LiMnPO4 nanocomposite for enhanced performance of Li-ion batteries
    Shen, Yu
    Liu, Shuhong
    Liu, Hongwen
    Zhao, Hong
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2023, 27 (04) : 1055 - 1060