Markov Random Field Structures for Facial Action Unit Intensity Estimation

被引:40
|
作者
Sandbach, Georgia [1 ]
Zafeiriou, Stefanos [1 ]
Pantic, Maja [1 ,2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London, England
[2] Univ Twente, EEMCS, NL-7522 NB Enschede, Netherlands
基金
英国工程与自然科学研究理事会;
关键词
POSE ESTIMATION; PAIN;
D O I
10.1109/ICCVW.2013.101
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel Markov Random Field (MRF) structure-based approach to the problem of facial action unit (AU) intensity estimation. AUs generally appear in common combinations, and exhibit strong relationships between the intensities of a number of AUs. The aim of this work is to harness these links in order to improve the estimation of the intensity values over that possible from regression of individual AUs. Our method exploits Support Vector Regression outputs to model appearance likelihoods of each individual AU, and integrates these with intensity combination priors in MRF structures to improve the overall intensity estimates. We demonstrate the benefits of our approach on the upper face AUs annotated in the DISFA database, with significant improvements seen in both correlation and error rates for the majority of AUs, and on average.
引用
收藏
页码:738 / 745
页数:8
相关论文
共 50 条
  • [1] Facial Action Unit Intensity Estimation and Feature Relevance Visualization with Random Regression Forests
    Werner, Philipp
    Handrich, Sebastian
    Al-Hamadi, Ayoub
    [J]. 2017 SEVENTH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION (ACII), 2017, : 401 - 406
  • [2] Deep Structured Learning for Facial Action Unit Intensity Estimation
    Walecki, Robert
    Rudovic, Ognjen
    Pavlovic, Vladimir
    Schuller, Bjoern
    Pantic, Maja
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5709 - 5718
  • [3] Dynamic Probabilistic Graph Convolution for Facial Action Unit Intensity Estimation
    Song, Tengfei
    Cui, Zijun
    Wang, Yuru
    Zheng, Wenming
    Ji, Qiang
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 4843 - 4852
  • [4] A Framework for Joint Estimation and Guided Annotation of Facial Action Unit Intensity
    Walecki, Robert
    Rudovic, Ognjen
    Pantic, Maja
    Pavlovic, Vladimir
    Cohn, Jeffrey F.
    [J]. PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 1460 - 1468
  • [5] Copula Ordinal Regression for Joint Estimation of Facial Action Unit Intensity
    Walecki, Robert
    Rudovic, Ognjen
    Pavlovic, Vladimir
    Pantic, Maja
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 4902 - 4910
  • [6] Joint Representation and Estimator Learning for Facial Action Unit Intensity Estimation
    Zhang, Yong
    Wu, Baoyuan
    Dong, Weiming
    Li, Zhifeng
    Liu, Wei
    Hu, Bao-Gang
    Ji, Qiang
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3452 - 3461
  • [7] Facial Action Unit Recognition and Intensity Estimation Enhanced Through Label Dependencies
    Wang, Shangfei
    Hao, Longfei
    Ji, Qiang
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (03) : 1428 - 1442
  • [8] Copula Ordinal Regression Framework for Joint Estimation of Facial Action Unit Intensity
    Walecki, Robert
    Rudovic, Ognjen
    Pavlovic, Vladimir
    Pantic, Maja
    [J]. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2019, 10 (03) : 297 - 312
  • [9] Personalized Modeling of Facial Action Unit Intensity
    Yang, Shuang
    Rudovic, Ognjen
    Pavlovic, Vladimir
    Pantic, Maja
    [J]. ADVANCES IN VISUAL COMPUTING (ISVC 2014), PT II, 2014, 8888 : 269 - 281
  • [10] On the estimation of Markov random field parameters
    Borges, CF
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (03) : 216 - 224