A Brief Overview of Restricted Mean Survival Time Estimators and Associated Variances

被引:11
|
作者
Nemes, Szilard [1 ,2 ]
Bulow, Erik [2 ,3 ]
Gustavsson, Andreas [1 ]
机构
[1] AstraZeneca, BioPharmaceut R&D, Data Sci & AI, BioPharma Early Biometr & Stat Innovat, S-43183 Gothenburg, Sweden
[2] Univ Gothenburg, Sahlgrenska Acad, Inst Clin Sci, Dept Orthopaed, S-40530 Gothenburg, Sweden
[3] Registerctr Vastra Gotaland, Swedish Hip Arthroplasty Register, S-41390 Gothenburg, Sweden
来源
STATS | 2020年 / 3卷 / 02期
关键词
RMST; censoring; variance estimator; efficacy; Kaplan-Meier; flexible-survival methods; pseudo-observation; CENTRAL-LIMIT-THEOREM; PSEUDO-OBSERVATIONS; JACKKNIFE ESTIMATE; PROPORTIONAL-HAZARDS; CONFIDENCE-INTERVALS; REGRESSION-ANALYSIS; MODELS; DIFFERENCE; BOOTSTRAP; TRIALS;
D O I
10.3390/stats3020010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Restricted Mean Survival Time (RMST) experiences a renaissance and is advocated as a model-free, easy to interpret alternative to proportional hazards regression and hazard rates with implication in causal inference. Estimation of RMST and associated variance is mainly done by numerical integration of Kaplan-Meier curves. In this paper we briefly review the two main alternatives to the Kaplan-Meier method; analysis based on pseudo-observations, and the flexible parametric survival method. Using computer simulations, we assess the efficacy of the three methods compared to a fully parametric approach where the distribution of survival times is known. Thereafter, the three methods are directly compared without any distributional assumption for the survival data. Generally, flexible parametric survival methods outperform both competitors, however the differences are small.
引用
收藏
页码:107 / 119
页数:13
相关论文
共 50 条
  • [1] Nonparametric and semiparametric estimators of restricted mean survival time under length-biased sampling
    He, Yifan
    Zhou, Yong
    [J]. LIFETIME DATA ANALYSIS, 2020, 26 (04) : 761 - 788
  • [2] Nonparametric and semiparametric estimators of restricted mean survival time under length-biased sampling
    Yifan He
    Yong Zhou
    [J]. Lifetime Data Analysis, 2020, 26 : 761 - 788
  • [3] On the Restricted Mean Survival Time Curve in Survival Analysis
    Zhao, Lihui
    Claggett, Brian
    Tian, Lu
    Uno, Hajime
    Pfeffer, Marc A.
    Solomon, Scott D.
    Trippa, Lorenzo
    Wei, L. J.
    [J]. BIOMETRICS, 2016, 72 (01) : 215 - 221
  • [4] Restricted mean survival time as a function of restriction time
    Zhong, Yingchao
    Schaubel, Douglas E.
    [J]. BIOMETRICS, 2022, 78 (01) : 192 - 201
  • [5] Clustered restricted mean survival time regression
    Chen, Xinyuan
    Harhay, Michael O.
    Li, Fan
    [J]. BIOMETRICAL JOURNAL, 2023, 65 (06)
  • [6] On the empirical choice of the time window for restricted mean survival time
    Tian, Lu
    Jin, Hua
    Uno, Hajime
    Lu, Ying
    Huang, Bo
    Anderson, Keaven M.
    Wei, L. J.
    [J]. BIOMETRICS, 2020, 76 (04) : 1157 - 1166
  • [7] Bayesian nonparametric analysis of restricted mean survival time
    Zhang, Chenyang
    Yin, Guosheng
    [J]. BIOMETRICS, 2023, 79 (02) : 1383 - 1396
  • [8] Semiparametric Additive Modeling of the Restricted Mean Survival Time
    Zhang, Yuan
    Schaubel, Douglas E.
    [J]. BIOMETRICAL JOURNAL, 2024, 66 (06)
  • [9] Generalized fiducial inference for the restricted mean survival time
    Bebu, Ionut
    Diao, Guoqing
    Hamasaki, Toshimitsu
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2023, 32 (05) : 1010 - 1020
  • [10] Weighted estimators of the complier average causal effect on restricted mean survival time with observed instrument-outcome confounders
    Dharmarajan, Sai H.
    Li, Yun
    Lehmann, Douglas
    Schaubel, Douglas E.
    [J]. BIOMETRICAL JOURNAL, 2021, 63 (04) : 712 - 724