A SYMMETRY RESULT FOR DEGENERATE ELLIPTIC EQUATIONS ON THE WIENER SPACE WITH NONLINEAR BOUNDARY CONDITIONS AND APPLICATIONS

被引:3
|
作者
Novaga, Matteo [1 ]
Pallara, Diego [2 ,3 ]
Sire, Yannick [4 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
[2] Univ Salento, Dipartimento Matemat & Fis Ennio De Giorgi, POB 193, I-73100 Lecce, Italy
[3] Univ Salento, Ist Nazl Fis Nucl, POB 193, I-73100 Lecce, Italy
[4] Univ Aix Marseille, I2M, CNRS, UMR 7353, Marseille, France
关键词
Fractional Ornstein-Uhlenbeck operator; Wiener spaces; EXTENSION PROBLEM; CONJECTURE; GIORGI; INEQUALITY; REGULARITY;
D O I
10.3934/dcdss.2016030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to study a boundary reaction problem on the space X x R, where X is an abstract Wiener space. We prove that smooth bounded solutions enjoy a symmetry property, i.e., are one-dimensional in a suitable sense. As a corollary of our result, we obtain a symmetry property for some solutions of the following equation (-Delta(gamma))(s)u = f(u), with s is an element of (0, 1), where (-Delta(gamma))(s) denotes a fractional power of the Ornstein-Uhlenbeck operator, and we prove that for any s is an element of (0, 1) monotone solutions are one-dimensional.
引用
收藏
页码:815 / 831
页数:17
相关论文
共 50 条
  • [1] Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equations and applications
    Barles, G
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 154 (01) : 191 - 224
  • [2] Degenerate elliptic equations with nonlinear boundary conditions and measures data
    Andreu, Fuensanta
    Igbida, Noureddine
    Mazon, Jose M.
    Toledo, Julian
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2009, 8 (04) : 767 - 803
  • [3] OBSTACLE PROBLEMS FOR DEGENERATE ELLIPTIC EQUATIONS WITH NONHOMOGENEOUS NONLINEAR BOUNDARY CONDITIONS
    Andreu, Fuensanta
    Igbida, Noureddine
    Mazon, Jose M.
    Toledo, Julian
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2008, 18 (11): : 1869 - 1893
  • [4] WIENER ESTIMATES AT BOUNDARY POINTS FOR DEGENERATE ELLIPTIC-EQUATIONS
    BIROLI, M
    MARCHI, S
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1986, 5B (03): : 689 - 706
  • [5] Regularity and symmetry results for nonlinear degenerate elliptic equations
    Esposito, Francesco
    Sciunzi, Berardino
    Trombetta, Alessandro
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 336 : 315 - 333
  • [6] WIENER ESTIMATES AT BOUNDARY POINTS FOR DEGENERATE ELLIPTIC-EQUATIONS - REMARK
    BIROLI, M
    MARCHI, S
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1986, 5C (01): : 257 - 267
  • [7] NONLINEAR BOUNDARY CONDITIONS FOR ELLIPTIC EQUATIONS
    Amster, Pablo
    Mariani, Maria Cristina
    Mendez, Osvaldo
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2005,
  • [8] ON L∞-REGULARITY RESULT FOR SOME DEGENERATE NONLINEAR ELLIPTIC EQUATIONS
    Bennouna, Jaouad
    Hammoumi, Mohamed
    Youssfi, Ahmed
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (02) : 873 - 886
  • [9] THE WIENER TEST FOR DEGENERATE ELLIPTIC-EQUATIONS
    FABES, E
    JERISON, D
    KENIG, C
    [J]. ANNALES DE L INSTITUT FOURIER, 1982, 32 (03) : 151 - 182
  • [10] Semilinear elliptic equations with nonlinear boundary conditions
    Harada, Junichi
    Otani, Mitsuharu
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E2965 - E2968