Cluster Forecasting of Corruption Using Nonlinear Autoregressive Models with Exogenous Variables (NARX)-An Artificial Neural Network Analysis

被引:5
|
作者
Ghahari, SeyedAli [1 ]
Queiroz, Cesar [2 ]
Labi, Samuel [1 ]
McNeil, Sue [3 ,4 ]
机构
[1] Purdue Univ, Lyles Sch Civil Engn, W Lafayette, IN 47907 USA
[2] World Bank, Washington, DC 20433 USA
[3] Univ Delaware, Dept Civil & Environm Engn, Newark, DE 19716 USA
[4] Univ New South Wales, Sch Civil & Environm Engn, Sydney, NSW 2052, Australia
关键词
policy; corruption; artificial neural networks (ANNs); nonlinear autoregressive exogenous models (NARX); SYSTEM;
D O I
10.3390/su132011366
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Any effort to combat corruption can benefit from an examination of past and projected worldwide trends. In this paper, we forecast the level of corruption in countries by integrating artificial neural network modeling and time series analysis. The data were obtained from 113 countries from 2007 to 2017. The study is carried out at two levels: (a) the global level, where all countries are considered as a monolithic group; and (b) the cluster level, where countries are placed into groups based on their development-related attributes. For each cluster, we use the findings from our previous study on the cluster analysis of global corruption using machine learning methods that identified the four most influential corruption factors, and we use those as independent variables. Then, using the identified influential factors, we forecast the level of corruption in each cluster using nonlinear autoregressive recurrent neural network models with exogenous inputs (NARX), an artificial neural network technique. The NARX models were developed for each cluster, with an objective function in terms of the Corruption Perceptions Index (CPI). For each model, the optimal neural network is determined by fine-tuning the hyperparameters. The analysis was repeated for all countries as a single group. The accuracy of the models is assessed by comparing the mean square errors (MSEs) of the time series models. The results suggest that the NARX artificial neural network technique yields reliable future values of CPI globally or for each cluster of countries. This can assist policymakers and organizations in assessing the expected efficacies of their current or future corruption control policies from a global perspective as well as for groups of countries.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Prediction of spring flows using nonlinear autoregressive exogenous (NARX) neural network models
    Di Nunno, Fabio
    Granata, Francesco
    Gargano, Rudy
    de Marinis, Giovanni
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2021, 193 (06)
  • [2] Prediction of spring flows using nonlinear autoregressive exogenous (NARX) neural network models
    Fabio Di Nunno
    Francesco Granata
    Rudy Gargano
    Giovanni de Marinis
    Environmental Monitoring and Assessment, 2021, 193
  • [3] Wastewater flow forecasting model based on the nonlinear autoregressive with exogenous inputs (NARX) neural network
    El Ghazouli, Khalid
    El Khatabi, Jamal
    Shahrour, Isam
    Soulhi, Aziz
    H2OPEN JOURNAL, 2021, 4 (01) : 276 - 290
  • [4] Tide Prediction in the Venice Lagoon Using Nonlinear Autoregressive Exogenous (NARX) Neural Network
    Di Nunno, Fabio
    de Marinis, Giovanni
    Gargano, Rudy
    Granata, Francesco
    WATER, 2021, 13 (09)
  • [5] Cooling Load Forecasting via Predictive Optimization of a Nonlinear Autoregressive Exogenous (NARX) Neural Network Model
    Kim, Jee-Heon
    Seong, Nam-Chul
    Choi, Wonchang
    SUSTAINABILITY, 2019, 11 (23)
  • [6] Hourly electric load forecasting using Nonlinear AutoRegressive with eXogenous (NARX) based neural network for the state of Goa, India
    Hashmi, Md Umar
    Arora, Varun
    Priolkar, Jayesh G.
    2015 INTERNATIONAL CONFERENCE ON INDUSTRIAL INSTRUMENTATION AND CONTROL (ICIC), 2015, : 1418 - 1423
  • [7] Forecasting groundwater levels using nonlinear autoregressive networks with exogenous input (NARX)
    Wunsch, Andreas
    Liesch, Tanja
    Broda, Stefan
    JOURNAL OF HYDROLOGY, 2018, 567 : 743 - 758
  • [8] Performance of Modeling Time Series Using Nonlinear Autoregressive with eXogenous input (NARX) in the Network Traffic Forecasting
    Haviluddin
    Alfred, Rayner
    2015 INTERNATIONAL CONFERENCE ON SCIENCE IN INFORMATION TECHNOLOGY (ICSITECH), 2015, : 164 - 168
  • [9] Comparative Study of Elman Neural Network (ENN) and Neural Network Autoregressive With Exogenous Input (NARX) For Flood Forecasting
    Zainorzuli, Siti Maisarah
    Abdullah, Syahrul Afzal Che
    Adnan, Ramli
    Ruslan, Fazlina Ahmat
    2019 IEEE 9TH SYMPOSIUM ON COMPUTER APPLICATIONS & INDUSTRIAL ELECTRONICS (ISCAIE), 2019, : 11 - 15
  • [10] The nonlinear autoregressive network with exogenous inputs (NARX) neural network to damp power system oscillations
    Carbonera, Luis Felipe Bianchi
    Pinheiro Bernardon, Daniel
    de Castro Karnikowski, Douglas
    Alberto Farret, Felix
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2021, 31 (01)