FLATSIM: The ForM@Ter LArge-Scale Multi-Temporal Sentinel-1 InterferoMetry Service

被引:14
|
作者
Thollard, Franck [1 ]
Clesse, Dominique [2 ]
Doin, Marie-Pierre [1 ]
Donadieu, Joelle [3 ]
Durand, Philippe [3 ]
Grandin, Raphael [4 ]
Lasserre, Cecile [5 ]
Laurent, Christophe [1 ]
Deschamps-Ostanciaux, Emilie [4 ]
Pathier, Erwan [1 ]
Pointal, Elisabeth [4 ]
Proy, Catherine [3 ]
Specht, Bernard [3 ]
机构
[1] Univ Grenoble Alpes, Univ Savoie Mt Blanc, CNRS, IRD,Univ Gustave Eiffel,ISTerre, F-38000 Grenoble, France
[2] Capgemini, Technol & Serv Informat, F-92130 Paris, France
[3] CNES Ctr Natl Etud Spatiales, F-75039 Toulouse, France
[4] Univ Paris, Inst Phys Globe Paris, CNRS, F-75005 Paris, France
[5] Univ Lyon, Univ Lyon 1, CNRS, ENSL,LGL TPE, F-69622 Villeurbanne, France
关键词
InSAR; Sentinel-1; automatic processing; time series analysis; deformation monitoring; tectonics; subsidence; SURFACE DISPLACEMENTS; STRAIN ACCUMULATION; FAULT; DEFORMATION; CALIFORNIA; CREEP; FIELD;
D O I
10.3390/rs13183734
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The purpose of the ForM@Ter LArge-scale multi-Temporal Sentinel-1 InterferoMetry service (FLATSIM) is the massive processing of Sentinel-1 data using multi-temporal interferometric synthetic aperture radar (InSAR) over large areas, i.e., greater than 250,000 km(2). It provides the French ForM@ter scientific community with automatically processed products using a state of the art processing chain based on a small baseline subset approach, namely the New Small Baseline (NSBAS). The service results from a collaboration between the scientific team that develops and maintains the NSBAS processing chain and the French Spatial Agency (CNES) that mirrors the Sentinel-1 data. The proximity to Sentinel-1 data, the NSBAS workflow, and the specific optimizations to make NSBAS processing massively parallel for the CNES high performance computing infrastructure ensures the efficiency of the chain, especially in terms of input and output, which is the key for the success of such a service. The FLATSIM service is made of a production module, a delivery module and a user access module. Products include interferograms, surface line of sight velocity, phase delay time series and auxiliary data. Numerous quality indicators are provided for an in-depth analysis of the quality and limits of the results. The first national call in 2020 for region of interest ended up with 8 regions spread over the world with scientific interests, including seismology, tectonics, volcano-tectonics, and hydrological cycle. To illustrate the FLATSIM capabilities, an analysis is shown here on two processed regions, the Afar region in Ethiopa, and the eastern border of the Tibetan Plateau.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Multi-Temporal InSAR Parallel Processing for Sentinel-1 Large-Scale Surface Deformation Mapping
    Duan, Wei
    Zhang, Hong
    Wang, Chao
    Tang, Yixian
    [J]. REMOTE SENSING, 2020, 12 (22) : 1 - 20
  • [2] A parallel multi-temporal InSAR method for Sentinel-1 large scale deformation monitoring
    Duan, Wei
    Zhang, Hong
    Wang, Chao
    Tang, Yixian
    [J]. 13TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR, EUSAR 2021, 2021, : 488 - 491
  • [3] Inversion of large-scale citrus soil moisture using multi-temporal Sentinel-1 and Landsat-8 data
    Wu, Zongjun
    Cui, Ningbo
    Zhang, Wenjiang
    Gong, Daozhi
    Liu, Chunwei
    Liu, Quanshan
    Zheng, Shunsheng
    Wang, Zhihui
    Zhao, Lu
    Yang, Yenan
    [J]. AGRICULTURAL WATER MANAGEMENT, 2024, 294
  • [4] Detection and Monitoring of Slow Landslides Using Sentinel-1 Multi-temporal Interferometry Products
    Wasowski, Janusz
    Bovenga, Fabio
    Nutricato, Raffaele
    Nitti, Davide Oscar
    Chiaradia, Maria Teresa
    [J]. ADVANCING CULTURE OF LIVING WITH LANDSLIDES, VOL 2: ADVANCES IN LANDSLIDE SCIENCE, 2017, : 249 - 256
  • [5] Multi-Temporal Sentinel-1 Backscatter and Coherence for Rainforest Mapping
    Pulella, Andrea
    Santos, Rodrigo Aragao
    Sica, Francescopaolo
    Posovszky, Philipp
    Rizzoli, Paola
    [J]. REMOTE SENSING, 2020, 12 (05)
  • [6] CHANGE DETECTION IN MULTI-TEMPORAL DUAL POLARIZATION SENTINEL-1 DATA
    Nielsen, Allan A.
    Canty, Morton J.
    Skriver, Henning
    Conradsen, Knut
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3901 - 3904
  • [7] Fusion of Multi-Temporal PAZ and Sentinel-1 Data for Crop Classification
    Busquier, Mario
    Valcarce-Dineiro, Ruben
    Lopez-Sanchez, Juan M.
    Plaza, Javier
    Sanchez, Nilda
    Arias-Perez, Benjamin
    [J]. REMOTE SENSING, 2021, 13 (19)
  • [8] Large-Scale Interseismic Strain Mapping of the NE Tibetan Plateau From Sentinel-1 Interferometry
    Ou, Q.
    Daout, S.
    Weiss, J. R.
    Shen, L.
    Lazecky, M.
    Wright, T. J.
    Parsons, B. E.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2022, 127 (06)
  • [9] Understanding wheat lodging using multi-temporal Sentinel-1 and Sentinel-2 data
    Chauhan, Sugandh
    Darvishzadeh, Roshanak
    Lu, Yi
    Boschetti, Mirco
    Nelson, Andrew
    [J]. REMOTE SENSING OF ENVIRONMENT, 2020, 243
  • [10] Classification of Nemoral Forests with Fusion of Multi-Temporal Sentinel-1 and 2 Data
    Bjerreskov, Kristian Skau
    Nord-Larsen, Thomas
    Fensholt, Rasmus
    [J]. REMOTE SENSING, 2021, 13 (05) : 1 - 19