Spatio-Spectral Remote Sensing Image Classification With Graph Kernels

被引:103
|
作者
Camps-Valls, Gustavo [1 ]
Shervashidze, Nino [2 ]
Borgwardt, Karsten M. [2 ]
机构
[1] Univ Valencia, Image Proc Lab, Valencia 46980, Spain
[2] Max Planck Inst, D-72076 Tubingen, Germany
关键词
Graphs; kernel methods; spatio-spectral image classification; support vector machine (SVM);
D O I
10.1109/LGRS.2010.2046618
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter presents a graph kernel for spatio-spectral remote sensing image classification with support vector machines (SVMs). The method considers higher order relations in the neighborhood (beyond pairwise spatial relations) to iteratively compute a kernel matrix for SVM learning. The proposed kernel is easy to compute and constitutes a powerful alternative to existing approaches. The capabilities of the method are illustrated in several multi- and hyperspectral remote sensing images acquired over both urban and agricultural areas.
引用
收藏
页码:741 / 745
页数:5
相关论文
共 50 条
  • [1] Graph Spatio-Spectral Total Variation Model for Hyperspectral Image Denoising
    Takemoto, Shingo
    Naganuma, Kazuki
    Ono, Shunsuke
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [2] Automatic Feature Learning for Spatio-Spectral Image Classification With Sparse SVM
    Tuia, Devis
    Volpi, Michele
    Mura, Mauro Dalla
    Rakotomamonjy, Alain
    Flamary, Remi
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (10): : 6062 - 6074
  • [3] A new spatio-spectral morphological segmentation for multi-spectral remote-sensing images
    Noyel, G.
    Angulo, J.
    Jeulin, D.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (22) : 5895 - 5920
  • [4] Classification of Remote Sensing Image Using SVM Kernels
    Mankar, Neha V.
    Khobragade, Anand
    Raghuwanshi, M. M.
    [J]. 2016 WORLD CONFERENCE ON FUTURISTIC TRENDS IN RESEARCH AND INNOVATION FOR SOCIAL WELFARE (STARTUP CONCLAVE), 2016,
  • [5] Semisupervised Remote Sensing Image Classification With Cluster Kernels
    Tuia, Devis
    Camps-Valls, Gustavo
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (02) : 224 - 228
  • [6] An adaptive spatio-spectral domain correlation parallel framework for hyperspectral image classification
    Wang, Xianchen
    Xie, Weixin
    [J]. PROCEEDINGS OF 2018 14TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2018, : 350 - 354
  • [7] Sparse Spatio-Spectral LapSVM With Semisupervised Kernel Propagation for Hyperspectral Image Classification
    Yang, Lixia
    Wang, Min
    Yang, Shuyuan
    Zhang, Rui
    Zhang, Pingting
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (05) : 2046 - 2054
  • [8] Introduction of Spatio-Spectral Indices for Using Spatial Data in Multispectral Image Classification
    Ashoori, Hamed
    Zoej, Mohamad Javad Valadan
    Sahebi, Mahmod Reza
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2019, 47 (06) : 1003 - 1017
  • [9] Introduction of Spatio-Spectral Indices for Using Spatial Data in Multispectral Image Classification
    Hamed Ashoori
    Mohamad Javad Valadan Zoej
    Mahmod Reza Sahebi
    [J]. Journal of the Indian Society of Remote Sensing, 2019, 47 : 1003 - 1017
  • [10] Spatio-Spectral Exploration Combining In Situ and Remote Measurements
    Thompson, David R.
    Wettergreen, David
    Foil, Greydon
    Furlong, Michael
    Kiran, Anatha Ravi
    [J]. PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 3679 - 3685