The future burden of obesity in Canada: a modelling study

被引:11
|
作者
O'Neill, Meghan [1 ]
Kornas, Kathy [1 ]
Rosella, Laura [1 ,2 ,3 ]
机构
[1] Univ Toronto, Dalla Lana Sch Publ Hlth, 155 Coll St,Hlth Sci Bldg,6th Floor,Suite 600, Toronto, ON M5T 3M7, Canada
[2] Inst Clin Evaluat Sci, Room 424,155 Coll St, Toronto, ON, Canada
[3] Publ Hlth Ontario, 480 Univ Ave,Suite 300, Toronto, ON M5G 1V2, Canada
基金
加拿大健康研究院;
关键词
Population health; Obesity; Chronic disease; Community health planning; Forecasting; EXTERNAL VALIDATION; PHYSICAL-ACTIVITY; RISK; CHILDHOOD; HEALTH; PREVENTION; OVERWEIGHT; ADIPOSITY; PROGRESS;
D O I
10.17269/s41997-019-00251-y
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Objectives We applied the validated Obesity Population Risk Tool (OPoRT) to estimate the future burden of obesity in Canada using baseline risk factors attained through routinely collected survey data. Methods OPoRT was developed using logistic regression with sex-specific generalized estimating equations to predict the 10-year prevalence of obesity (outcome BMI >= 30.0) among adults 18 and older. The algorithm includes 17 predictive factors, including socio-demographic and health behavioural characteristics. OPoRT demonstrated excellent discrimination (C-statistic >= 0.89) and achieved calibration. We applied OPoRT to Canadian Community Health Survey (2013/14) data to predict the future prevalence of obesity in Canada for a variety of population subgroups. Results The predicted burden of obesity grew from 261 cases per 1000 in 2013/14 to 326 cases per 1000 in 2023/24 corresponding to a total of 8.54 million individuals with obesity. The burden is expected to be higher among males (347 cases per 1000) than females (305 cases per 1000). Individuals aged 35-49 had the highest predicted burden of obesity (374 cases per 1000) and the largest number of predicted cases (2.42 million), while individuals in the >= 65 age group had the lowest predicted burden (236 cases per 1000). The number of individuals with obesity per 1000 is highest among those severely food insecure (452 cases per 1000), compared with food secure individuals (324 cases per 1000). Conclusions OPoRT can be used to estimate the future population burden of obesity, to identify priority subgroups at an elevated risk. Burden estimates should be reflected in approaches to curb the future burden of obesity.
引用
收藏
页码:768 / 778
页数:11
相关论文
共 50 条
  • [1] The future burden of obesity in Canada: a modelling study
    Meghan O’Neill
    Kathy Kornas
    Laura Rosella
    Canadian Journal of Public Health, 2019, 110 : 768 - 778
  • [2] The Public Health Burden of Obesity in Canada
    Janssen, Ian
    CANADIAN JOURNAL OF DIABETES, 2013, 37 (02) : 90 - 96
  • [3] INSIDE ANEMIA OF CKD: MICROSIMULATION MODELLING OF THE FUTURE COST BURDEN OF ANAEMIA OF CKD IN CANADA
    Retat, Lise
    Webber, Laura
    Sanchez, Juan Jose Garcia
    Cabrera, Claudia
    Grandy, Susan
    Rao, Naveen
    Bhatt, Purav
    Wong, Deborah
    Parackal, Anna
    Wish, Jay
    Tangri, Navdeep
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2021, 36 : 332 - 332
  • [4] The current and future burden of hepatitis B in Switzerland: a modelling study
    Negro, Francesco
    Mullhaupt, Beat
    Semela, David
    Blach, Sarah
    Bruggmann, Philip
    De Gottardi, Andrea
    Dufour, Jean-Francois
    Fraga, Montserrat
    Galante, Antonio
    Razavi, Homie
    Barbosa, Joana Vieira
    Razavi-Shearer, Devin
    SWISS MEDICAL WEEKLY, 2023, 153
  • [5] Future Burden of Morbidity and Disability in England and Wales: A Modelling Study
    Castillo, Maria Guzman
    Ahmadi-Abhari, Sara
    Bandosz, Piotr
    Shipley, Martin
    Capewell, Simon
    Singh-Manoux, Archana
    Kivimaki, Mika
    Brunner, Eric
    O'Flaherty, Martin
    CIRCULATION, 2016, 133
  • [6] The avoidable disease burden associated with overweight and obesity in Kenya: A modelling study
    Wanjau, Mary Njeri
    Aminde, Leopold Ndemnge
    Veerman, J. Lennert
    ECLINICALMEDICINE, 2022, 50
  • [7] Obesity Burden and Impact of Weight Loss in Saudi Arabia: A Modelling Study
    Saleh A. Alqahtani
    Hussain A. Al-Omar
    Ali Alshehri
    Abdulmohsen Abanumay
    Hana Alabdulkarim
    Ali Alrumaih
    Mahmoud S. Eldin
    Volker Schnecke
    Advances in Therapy, 2023, 40 : 1114 - 1128
  • [8] Obesity Burden and Impact of Weight Loss in Saudi Arabia: A Modelling Study
    Alqahtani, Saleh A.
    Al-Omar, Hussain A.
    Alshehri, Ali
    Abanumay, Abdulmohsen
    Alabdulkarim, Hana
    Alrumaih, Ali
    Eldin, Mahmoud S.
    Schnecke, Volker
    ADVANCES IN THERAPY, 2023, 40 (03) : 1114 - 1128
  • [9] Economic Burden of Obesity Management: A Retrospective Cohort Study from Ontario, Canada
    Wharton, Sean
    Luckevich, Maria
    Luguzis, Artis
    Eberg, Maria
    Kukaswadia, Atif
    Neish, Calum
    Capucci, Silvia
    Varbo, Anette
    Morgen, Camilla
    OBESITY, 2023, 31 : 266 - 267
  • [10] Estimating the future burden of type 2 diabetes in Belgium: a modelling study
    Mertens, Elly
    Ocira, Junior
    Colizzi, Chiara
    Sagastume, Diana
    Salve-Vasquez, Maria
    Vandevijvere, Stefanie
    Penalvo, Jose L.
    ANNALS OF NUTRITION AND METABOLISM, 2023, 79 : 813 - 814