Possibilistic reformed fuzzy local information clustering technique for noisy microarray image spots segmentation

被引:4
|
作者
Biju, V. G. [1 ,2 ]
Mythili, P. [2 ]
机构
[1] Coll Engn Munnar, Dept Elect & Commun Engn, Munnar 685612, India
[2] Cochin Univ Sci & Technol, Sch Engn, Div Elect, Cochin 682022, Kerala, India
来源
CURRENT SCIENCE | 2017年 / 113卷 / 06期
关键词
Fuzzy clustering; gene expression; image processing; microarray; ALGORITHMS; MODEL;
D O I
10.18520/cs/v113/i06/1072-1080
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The cDNA microarray image provides useful information about thousands of gene expressions simultaneously. This information is used by bioinformatics researchers for diagnosis of different diseases and drug designs. Microarray image spot segmentation using an improved fuzzy clustering algorithm is proposed in this article. The proposed Possibilistic Reformed Fuzzy Local Information C Means (PRFLICM) algorithm is a variant of Possibilistic Fuzzy Local Information C Means (PFLICM) algorithm. The parameters used for testing the proposed algorithm include segmentation matching factor (SMF), probability of error (p(e)), discrepancy distance (D), normalized mean square error and sum of square distance (SSD). The performance of the algorithm is validated with a set of simulated cDNA microarray images with known gene expression values. From the results of SMF, the proposed PRFLICM shows an improvement of 0.4% and 0.1% for high noise and low noise microarray images respectively when compared to PFLICM algorithm. The proposed algorithm is applied to yeast microarray database (YMD) and is used to find the yeast cell life cycle generated genes. The results show that the proposed algorithm has identified 101 cell life cycle regulated genes out of 104 such genes published in the YMD database.
引用
收藏
页码:1072 / 1080
页数:9
相关论文
共 50 条
  • [1] Fuzzy clustering algorithms for cDNA microarray image spots segmentation
    Biju, V. G.
    Mythili, P.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES, ICICT 2014, 2015, 46 : 417 - 424
  • [2] Kernel Possibilistic Fuzzy c-Means Clustering with Local Information for Image Segmentation
    Kashif Hussain Memon
    Sufyan Memon
    Muhammad Ali Qureshi
    Muhammad Bux Alvi
    Dileep Kumar
    Rehan Ali Shah
    International Journal of Fuzzy Systems, 2019, 21 : 321 - 332
  • [3] Kernel Possibilistic Fuzzy c-Means Clustering with Local Information for Image Segmentation
    Memon, Kashif Hussain
    Memon, Sufyan
    Qureshi, Muhammad Ali
    Alvi, Muhammad Bux
    Kumar, Dileep
    Shah, Rehan Ali
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2019, 21 (01) : 321 - 332
  • [4] Robust superpixel-based fuzzy possibilistic clustering method incorporating local information for image segmentation
    Wu, Chengmao
    Zhao, Jingtian
    VISUAL COMPUTER, 2024, 40 (11): : 7961 - 8000
  • [5] Fuzzy c-means clustering with non local spatial information for noisy image segmentation
    Zhao, Feng
    Jiao, Licheng
    Liu, Hanqiang
    FRONTIERS OF COMPUTER SCIENCE IN CHINA, 2011, 5 (01): : 45 - 56
  • [6] Fuzzy c-means clustering with non local spatial information for noisy image segmentation
    Feng Zhao
    Licheng Jiao
    Hanqiang Liu
    Frontiers of Computer Science in China, 2011, 5 : 45 - 56
  • [7] Sequential Possibilistic Local Information One-Means Clustering For Image Segmentation
    Wu, Wenlong
    Keller, James M.
    2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [8] Quadratic surface center-based possibilistic fuzzy clustering with kernel metric and local information for image segmentation
    Chengmao Wu
    Zeren Wang
    Multimedia Tools and Applications, 2024, 83 : 44147 - 44191
  • [9] Quadratic surface center-based possibilistic fuzzy clustering with kernel metric and local information for image segmentation
    Wu, Chengmao
    Wang, Zeren
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 44147 - 44191
  • [10] Possibilistic Fuzzy Local Information C-Means for Sonar Image Segmentation
    Zare, Alina
    Young, Nicholas
    Suen, Daniel
    Nabelek, Thomas
    Galusha, Aquila
    Keller, James
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017,