PURE ENDMEMBER EXTRACTION USING SSR FOR HYPERSPECTRAL IMAGERY

被引:0
|
作者
Sun, Weiwei [1 ,2 ]
Jiang, Man [1 ]
Zhang, Liangpei [2 ]
机构
[1] Ningbo Univ, Fac Architectural Engn Civil Engn & Environm, Ningbo 315211, Zhejiang, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
关键词
Endmember extraction; symmetric sparse representation; hyperspectral imagery; spectral unmixing;
D O I
10.1109/IGARSS.2016.7730721
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This manuscript proposes a symmetric sparse representation (SSR) method to extract pure endmembers from Hyperspectral imagery (HSI). The SSR assumes that the desired endmembers and all the HSI pixels can be sparsely represented by each other and it formulates the endmember extraction problem into finding archetypes in the minimal convex hull of the HSI data. The optimization program of SSR is solved by a simple projected gradient algorithm and the endmembers are initialized with the vector quantization scheme. Preliminary results on the popular Urban HSI data infer that the SSR performs better than several state-of-the-art methods (VCA, NFINDER, AVMAX, SVMAX, XRAY, OSP and H2NMF).
引用
收藏
页码:6589 / 6592
页数:4
相关论文
共 50 条
  • [1] Pure endmember extraction using robust kernel archetypoid analysis for hyperspectral imagery
    Sun, Weiwei
    Yang, Gang
    Wu, Ke
    Li, Weiyue
    Zhang, Dianfa
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 131 : 147 - 159
  • [2] Endmember extraction used for hyperspectral imagery loss compression
    Zhang Li-yan
    Chen De-rong
    Tao Peng
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2008, 28 (07) : 1445 - 1448
  • [3] Convex Cone-Based Endmember Extraction for Hyperspectral Imagery
    Xiong, Wei
    Tsai, Ching Tsorng
    Yang, Ching Wen
    Chang, Chein-, I
    IMAGING SPECTROMETRY XV, 2010, 7812
  • [4] Joint Bayesian Endmember Extraction and Linear Unmixing for Hyperspectral Imagery
    Dobigeon, Nicolas
    Moussaoui, Said
    Coulon, Martial
    Tourneret, Jean-Yves
    Hero, Alfred O.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (11) : 4355 - 4368
  • [5] Statistics-based endmember extraction algorithms for hyperspectral imagery
    Chu, Shih-Yu
    Wu, Chao-Cheng
    Chang, Chein-, I
    IMAGING SPECTROMETRY XII, 2007, 6661
  • [6] ENDMEMBER EXTRACTION FROM HYPERSPECTRAL IMAGERY USING A PARALLEL ENSEMBLE APPROACH WITH CONSENSUS ANALYSIS
    Ayuso, E.
    Setoain, J.
    Prieto, M.
    Tenllado, C.
    Tirado, F.
    Plaza, J.
    Plaza, A.
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 3513 - +
  • [7] Classification of hyperspectral imagery using GPs and the OAD covariance function with automated endmember extraction
    Schneider, Sven
    Melkumyan, Arman
    Murphy, Richard J.
    Nettleton, Eric
    2011 23RD IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2011), 2011, : 579 - 584
  • [8] Endmember extraction from hyperspectral imagery based on QR factorisation using givens rotations
    Gan, Yuquan
    Hu, Bingliang
    Liu, Weihua
    Wang, Shuang
    Zhang, Geng
    Feng, Xiangpeng
    Wen, Desheng
    IET IMAGE PROCESSING, 2019, 13 (02) : 332 - 343
  • [9] A Gaussian elimination based fast endmember extraction algorithm for hyperspectral imagery
    Geng, Xiurui
    Xiao, Zhengqing
    Ji, Luyan
    Zhao, Yongchao
    Wang, Fuxiang
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2013, 79 : 211 - 218
  • [10] Endmember Extraction From Hyperspectral Imagery Based on Probabilistic Tensor Moments
    Fernandez-Beltran, Ruben
    Pla, Filiberto
    Plaza, Antonio
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (12) : 2120 - 2124