Learning Certifiably Optimal Rule Lists

被引:0
|
作者
Angelino, Elaine [1 ]
Larus-Stone, Nicholas [2 ]
Alabi, Daniel [2 ]
Seltzer, Margo [2 ]
Rudin, Cynthia [3 ]
机构
[1] Univ Calif Berkeley, EECS, Berkeley, CA 94720 USA
[2] Harvard Univ, SEAS, Cambridge, MA 02138 USA
[3] Duke Univ, Durham, NC 27708 USA
关键词
Rule lists; Decision trees; Optimization; Interpretable models; DECISION LISTS;
D O I
10.1145/3097983.3098047
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present the design and implementation of a custom discrete optimization technique for building rule lists over a categorical feature space. Our algorithm provides the optimal solution, with a certificate of optimality. By leveraging algorithmic bounds, efficient data structures, and computational reuse, we achieve several orders of magnitude speedup in time and a massive reduction of memory consumption. We demonstrate that our approach produces optimal rule lists on practical problems in seconds. This framework is a novel alternative to CART and other decision tree methods.
引用
收藏
页码:35 / 44
页数:10
相关论文
共 50 条
  • [1] Learning Certifiably Optimal Rule Lists for Categorical Data
    Angelino, Elaine
    Larus-Stone, Nicholas
    Alabi, Daniel
    Seltzer, Margo
    Rudin, Cynthia
    JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 18
  • [2] An Optimization Approach to Learning Falling Rule Lists
    Chen, Chaofan
    Rudin, Cynthia
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [3] Learning Optimal Decision Sets and Lists with SAT
    Yu J.
    Ignatiev A.
    Stuckey P.J.
    Le Bodic P.
    Journal of Artificial Intelligence Research, 2021, 72 : 1251 - 1279
  • [4] Learning Optimal Decision Sets and Lists with SAT
    Yu, Jinqiang
    Ignatiev, Alexey
    Stuckey, Peter J.
    Le Bodic, Pierre
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2021, 72 : 1251 - 1279
  • [5] Leveraging Integer Linear Programming to Learn Optimal Fair Rule Lists
    Aivodji, Ulrich
    Ferry, Julien
    Gambs, Sebastien
    Huguet, Marie-Jose
    Siala, Mohamed
    INTEGRATION OF CONSTRAINT PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND OPERATIONS RESEARCH, CPAIOR 2022, 2022, 13292 : 103 - 119
  • [6] Certifiably optimal sparse inverse covariance estimation
    Bertsimas, Dimitris
    Lamperski, Jourdain
    Pauphilet, Jean
    MATHEMATICAL PROGRAMMING, 2020, 184 (1-2) : 491 - 530
  • [7] Certifiably optimal sparse principal component analysis
    Lauren Berk
    Dimitris Bertsimas
    Mathematical Programming Computation, 2019, 11 : 381 - 420
  • [8] Certifiably Optimal Low Rank Factor Analysis
    Bertsimas, Dimitris
    Copenhaver, Martin S.
    Mazumder, Rahul
    JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18
  • [9] Falling Rule Lists
    Wang, Fulton
    Rudin, Cynthia
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 1013 - 1022
  • [10] Disjunctive Rule Lists
    Ragodos, Ronilo
    Wang, Tong
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (06) : 3259 - 3276