Two-Sided Bounds for the Volume of Right-Angled Hyperbolic Polyhedra

被引:1
|
作者
Vesnin, A. Yu. [1 ]
Repovs, D. [2 ]
机构
[1] Russian Acad Sci, Sobolev Inst Math, Novosibirsk, Russia
[2] Univ Ljubljana, Ljubljana 61000, Slovenia
基金
俄罗斯基础研究基金会;
关键词
right-angled hyperbolic polyhedron; volume estimate for hyperbolic polyhedra; Lobachevskii space; Lobell polyhedron; dodecahedron; MANIFOLDS; COMPLEXITY;
D O I
10.1134/S0001434611010032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a compact right-angled polyhedron R in Lobachevskii space H(3), let vol(R) denote its volume and vert(R), the number of its vertices. Upper and lower bounds for vol(R) were recently obtained by Atkinson in terms of vert(R). In constructing a two-parameter family of polyhedra, we show that the asymptotic upper bound 5(v3)/8, where v(3) is the volume of the ideal regular tetrahedron in H(3), is a double limit point for the ratios vol(R)/ vert(R). Moreover, we improve the lower bound in the case vert(R) <= 56.
引用
收藏
页码:31 / 36
页数:6
相关论文
共 50 条