Low-Cost AiP Array Design Using Machine Learning for mmWave Mobile Systems

被引:0
|
作者
Nakmouche, Mohammed Farouk [1 ]
Magray, M. Idrees [2 ]
Allam, A. M. M. A. [3 ]
Fawzy, Diaa E. [1 ]
Lin, Ding Bing [4 ]
Tarng, Jenn-Hwan [2 ]
机构
[1] Izmir Univ Econ, Fac Engn, Izmir, Turkey
[2] Natl Chiao Tung Univ, Ctr MmWave Smart Radar Syst & Technol, Hsinchu, Taiwan
[3] German Univ Cairo, Dept Commun Engn, Cairo, Egypt
[4] Natl Taiwan Univ Sci & Technol, Dept Elect & Comp Engn, Taipei, Taiwan
关键词
mmWave; Antenna in Packaging (AiP); ANN; machine learning; PACKAGE; ANTENNA;
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Based on low-cost PCB solution, an array antenna in packaging (AiP) dedicated for mmWave mobile systems is designed using machine learning. The proposed antenna operates at 28 GHz (26.5 - 29.5 GHz) with a gain ranging from 8 dB to 15 dB in the operating bandwidth. The development process of the proposed AiP is assisted by machine learning for prediction of the optimal radiating patch's length and width in terms of resonance frequency.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Enhanced Heterogeneous mmWave AiP Design with Machine Learning
    Lin, Po-An
    Hsu, Shao-En
    Lai, Yan-Chen
    Chang, Wei-Tung
    Tseng, Chu-Tsung
    Lu, Shih-Wen
    2023 ASIA-PACIFIC MICROWAVE CONFERENCE, APMC, 2023, : 694 - 697
  • [2] Computational Sensing in Plasmonics: Design of Low-cost and Mobile Plasmonic Readers Using Machine Learning
    Ballard, Zachary S.
    Shir, Daniel
    Bhardwaj, Aashish
    Bazargan, Sarah
    Sathianathan, Shyama
    Ozcan, Aydogan
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [3] Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning
    Ballard, Zachary S.
    Shir, Daniel
    Bhardwaj, Aashish
    Bazargan, Sarah
    Sathianathan, Shyama
    Ozcan, Aydogan
    ACS NANO, 2017, 11 (02) : 2266 - 2274
  • [4] Calibration of a Low-Cost Methane Sensor Using Machine Learning
    Mitchell, Hazel Louise
    Cox, Simon J.
    Lewis, Hugh G.
    SENSORS, 2024, 24 (04)
  • [5] A low-cost phased array for mobile satellite communications
    Geissler, A.
    Boettcher, M.
    Gieron, R.
    Eube, M.
    Siatchoua, P.
    2007 2ND INTERNATIONAL ITG CONFERENCE ON ANTENNAS, 2007, : 148 - 152
  • [6] Design and Development of A-vent: A Low-Cost Ventilator with Cost-Effective Mobile Cloud Caching and Embedded Machine Learning
    Cabacungan, Paul M.
    Oppus, Carlos M.
    Cabacungan, Nerissa G.
    Mamaradlo, John Paul A.
    Santiago, Paul Ryan A.
    Mercado, Neil Angelo M.
    Faustino, E. Vincent S.
    Tangonan, Gregory L.
    2021 IEEE REGION 10 SYMPOSIUM (TENSYMP), 2021,
  • [7] Design of an Above Knee Low-Cost Powered Prosthetic Leg Using Electromyography and Machine Learning
    Baby, Cyril Joe
    Das, Ketan Jitendra
    Venugopal, P.
    SOFT COMPUTING FOR PROBLEM SOLVING, SOCPROS 2018, VOL 2, 2020, 1057 : 339 - 348
  • [8] Drought Stress Detection Using Low-Cost Computer Vision Systems and Machine Learning Techniques
    Ramos-Giraldo, Paula
    Reberg-Horton, Chris
    Locke, Anna M.
    Mirsky, Steven
    Lobaton, Edgar
    IT PROFESSIONAL, 2020, 22 (03) : 27 - 29
  • [9] SOIL PHOSPHORUS TEST USING A LOW-COST SPECTROPHOTOMETER AND MACHINE LEARNING
    Mayrink, Gregory O.
    de Queiroz, Daniel M.
    Coelho, Andre L. de F.
    Valente, Domingos S. M.
    ENGENHARIA AGRICOLA, 2022, 42 (06):
  • [10] Emotion assessment using Machine Learning and low-cost wearable devices
    Laureanti, R.
    Bilucaglia, M.
    Zito, M.
    Circi, R.
    Fici, A.
    Rivetti, E.
    Valesi, R.
    Oldrini, C.
    Mainardi, L. T.
    Russo, V
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 576 - 579