Mean first passage time for a class of non-Markovian processes

被引:8
|
作者
Dienst, A. [1 ]
Friedrich, R. [1 ]
机构
[1] Univ Munster, Inst Theoret Phys, D-48149 Munster, Germany
关键词
D O I
10.1063/1.2755928
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We determine the probability distribution of the first passage time for a class of non-Markovian processes. This class contains, amongst others, the well-known continuous time random walk (CTRW), which is able to account for many properties of anomalous diffusion processes. In particular, we obtain the mean first passage time for CTRW processes with truncated power-law transition time distribution. Our treatment is based on the fact that the solutions of the non-Markovian master equation can be obtained via an integral transform from a Markovian Langevin process.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] MEAN FIRST-PASSAGE TIME FOR NON-MARKOVIAN PROCESSES DRIVEN BY CONTINUOUS NOISE
    YANG, M
    WU, DJ
    CAO, L
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1995, 23 (02) : 167 - 174
  • [2] The perturbation approximation of the mean first-passage time for nonlinear non-Markovian continuous processes
    Yang, M
    Wu, DJ
    Cao, L
    Li, ZG
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1996, 26 (03) : 283 - 288
  • [3] Mean first-passage times in confined media: from Markovian to non-Markovian processes
    Benichou, O.
    Guerin, T.
    Voituriez, R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (16)
  • [4] THE MEAN FIRST-PASSAGE TIME FOR NONLINEAR NON-MARKOVIAN CONTINUOUS NOISE
    YANG, M
    CAO, L
    WU, DJ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1995, 24 (03) : 305 - 310
  • [5] PROBABILITY EVOLUTION AND MEAN 1ST-PASSAGE TIME FOR MULTIDIMENSIONAL NON-MARKOVIAN PROCESSES
    WU, DJ
    CAO, L
    YANG, B
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1989, 11 (04) : 379 - 388
  • [6] MEAN 1ST-PASSAGE TIME OF CONTINUOUS NON-MARKOVIAN PROCESSES DRIVEN BY COLORED NOISE
    SANCHO, JM
    SAGUES, F
    SANMIGUEL, M
    PHYSICAL REVIEW A, 1986, 33 (05): : 3399 - 3403
  • [7] Mean first-passage times of non-Markovian random walkers in confinement
    Guerin, T.
    Levernier, N.
    Benichou, O.
    Voituriez, R.
    NATURE, 2016, 534 (7607) : 356 - 359
  • [8] Mean first-passage times of non-Markovian random walkers in confinement
    T. Guérin
    N. Levernier
    O. Bénichou
    R. Voituriez
    Nature, 2016, 534 : 356 - 359
  • [9] 1ST-PASSAGE TIME PROBLEMS FOR NON-MARKOVIAN PROCESSES
    HANGGI, P
    TALKNER, P
    PHYSICAL REVIEW A, 1985, 32 (03): : 1934 - 1937
  • [10] First passage time densities in non-Markovian models with subthreshold oscillations
    Verechtchaguina, T
    Sokolov, IM
    Schimansky-Geier, L
    EUROPHYSICS LETTERS, 2006, 73 (05): : 691 - 697