Informational inference via information flow

被引:0
|
作者
Bruza, PD [1 ]
Song, D [1 ]
机构
[1] Univ Queensland, Distributed Syst Technol Ctr, St Lucia, Qld 4067, Australia
关键词
informational inference; information flow; conceptual spaces;
D O I
10.1109/DEXA.2001.953069
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human judgments about information would seem to have an inferential character. This article presents an informational inference mechanism realized via computations of information flow through a high dimensional conceptual space. The conceptual space is realized via the Hyperspace Analogue to Language Algorithm (HAL), which produces vector representations of concepts compatible with those used in human information processing. We show how inference at the symbolic level can be implemented by employing Bai-wise and Seligman's theory of information flow: The real valued state spaces advocated by them are realized by HAL vectors to represent the information "state" of a word in the context of a collection of words. Examples of information flow are given to illustrate how it can be used to drive informational inference.
引用
收藏
页码:237 / 241
页数:5
相关论文
共 50 条
  • [1] Information flow inference for free
    Pottier, F
    Conchon, S
    [J]. ACM SIGPLAN NOTICES, 2000, 35 (09) : 46 - 57
  • [2] Information flow inference for ML
    Pottier, F
    Simonet, V
    [J]. ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, 2003, 25 (01): : 117 - 158
  • [3] Information flow inference for ML
    Pottier, F
    Simonet, V
    [J]. ACM SIGPLAN NOTICES, 2002, 37 (01) : 319 - 330
  • [4] On Geometry of Information Flow for Causal Inference
    Surasinghe, Sudam
    Bollt, Erik M.
    [J]. ENTROPY, 2020, 22 (04)
  • [5] Introducing Information Measures via Inference
    Simeone, Osvaldo
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (01) : 167 - 171
  • [6] INFORMATION FLOW OPTIMIZATION IN INFERENCE NETWORKS
    Deshmukh, Aditya
    Liu, Jing
    Veeravalli, Venugopal V.
    Verma, Gunjan
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8289 - 8293
  • [7] Information dissemination on Twitter: an exploratory analysis of the informational flow of retweets
    Santana Junior, Celio Andrade
    Silva Albuquerque, Joao Pedro
    Queiroz, Fabiola Souza
    Lima, Steffane Ramires
    [J]. ATOZ-NOVAS PRATICAS EM INFORMACAO E CONHECIMENTO, 2014, 3 (01): : 50 - 59
  • [8] Computational inference of neural information flow networks
    Smith, V. Anne
    Yu, Jing
    Smulders, Tom V.
    Hartemink, Alexander J.
    Jarvis, Erich D.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (11) : 1436 - 1449
  • [9] Merlin: Specification Inference for Explicit Information Flow Problems
    Livshits, Benjamin
    Nori, Aditya V.
    Rajamani, Sriram K.
    Banerjee, Anindya
    [J]. PLDI'09 PROCEEDINGS OF THE 2009 ACM SIGPLAN CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION, 2009, : 75 - 86
  • [10] Inference of Causal Information Flow in Collective Animal Behavior
    Department of Mathematics, Clarkson University, Potsdam
    NY
    13699, United States
    不详
    CA
    94305, United States
    [J]. IEEE Trans. Mol. Biol. Multi-Scale Commun., 1 (107-116):