Multi-granularity Visualization of Trajectory Clusters using Sub-trajectory Clustering

被引:0
|
作者
Chang, Cheng [1 ]
Zhou, Baoyao [1 ]
机构
[1] HP Labs China, Beijing, Peoples R China
关键词
visualization; trajectory; clustering; multi-granularity; segmentation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the surging of the requirements of location-based services, mining various interesting patterns from the spatial data becomes more and more important. In this paper, we propose an approach for visualizing the trajectory clustering results based on sub-trajectory clusters discovered from large-scale trajectory data. At first, we segment each trajectory into a set of sub-trajectories by detecting its corner points. And then, we choose Frechet distance to compute the similarity between sub-trajectories, and use a density-based clustering method to cluster sub-trajectories and get an augmented order of the sub-trajectories. The visualization method can support multi-granularity views of the generated sub-trajectory clusters. Experiments have demonstrated the applicability and benefits of the proposed approach.
引用
收藏
页码:577 / 582
页数:6
相关论文
共 50 条
  • [1] Sub-trajectory clustering with deep reinforcement learning
    Anqi Liang
    Bin Yao
    Bo Wang
    Yinpei Liu
    Zhida Chen
    Jiong Xie
    Feifei Li
    The VLDB Journal, 2024, 33 : 685 - 702
  • [2] Sub-trajectory clustering with deep reinforcement learning
    Liang, Anqi
    Yao, Bin
    Wang, Bo
    Liu, Yinpei
    Chen, Zhida
    Xie, Jiong
    Li, Feifei
    VLDB JOURNAL, 2024, 33 (03): : 685 - 702
  • [3] Comparison study of sub-trajectory clustering in data mining
    Yang, Guodong
    Huang, Zhitao
    Wang, Xiang
    3RD INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY, ENVIRONMENT AND CHEMICAL ENGINEERING, 2017, 69
  • [4] Common Sub-Trajectory Clustering via Hypercubes in Spatiotemporal Space
    Hsu, Oscar Lijen
    Lee, Che-Rung
    IEEE ACCESS, 2020, 8 : 23369 - 23377
  • [5] Multi-granularity scenarios understanding network for trajectory prediction
    Yang, Biao
    Yang, Jicheng
    Ni, Rongrong
    Yang, Changchun
    Liu, Xiaofeng
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (01) : 851 - 864
  • [6] Multi-granularity scenarios understanding network for trajectory prediction
    Biao Yang
    Jicheng Yang
    Rongrong Ni
    Changchun Yang
    Xiaofeng Liu
    Complex & Intelligent Systems, 2023, 9 : 851 - 864
  • [7] Time-aware Sub-Trajectory Clustering in Hermes@PostgreSQL
    Tampakis, Panagiotis
    Pelekis, Nikos
    Theodoridis, Yannis
    Andrienko, Natalia
    Andrienko, Gennady
    Fuchs, Georg
    2018 IEEE 34TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2018, : 1581 - 1584
  • [8] Sub-trajectory Similarity Join with Obfuscation
    Chang, Yanchuan
    Qi, Jianzhong
    Tanin, Egemen
    Ma, Xingjun
    Samet, Hanan
    33RD INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT (SSDBM 2021), 2020, : 181 - 192
  • [9] Automatic Mining of Multi-granularity Temporal Regularity from Trajectory Data
    Huang, Siyuan
    Zhang, Rui
    Li, Nuofei
    Guo, Jiming
    Jiang, Hongbo
    BDCAT'17: PROCEEDINGS OF THE FOURTH IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES, 2017, : 247 - 254
  • [10] A Privacy-Preserving Trajectory Publishing Method Based on Multi-Dimensional Sub-Trajectory Similarities
    Shen, Hua
    Wang, Yu
    Zhang, Mingwu
    SENSORS, 2023, 23 (24)