Colorful Strips

被引:4
|
作者
Aloupis, Greg [1 ]
Cardinal, Jean [1 ]
Collette, Sebastien [1 ]
Imahori, Shinji [2 ]
Korman, Matias [1 ]
Langerman, Stefan [1 ]
Schwartz, Oded [3 ]
Smorodinsky, Shakhar [4 ]
Taslakian, Perouz [1 ]
机构
[1] Univ Libre Bruxelles, Brussels, Belgium
[2] Nagoya Univ, Nagoya, Aichi 4648601, Japan
[3] Weizmann Inst Sci, IL-76100 Rehovot, Israel
[4] Ben Gurion Univ Negev, IL-84105 Beer Sheva, Israel
关键词
Hypergraph coloring; Covering decomposition; Lovasz local lemma; Computational geometry; COLORING BIPARTITE MULTIGRAPHS; COVERINGS; PLANE;
D O I
10.1007/s00373-011-1014-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the following geometric hypergraph coloring problem: given a planar point set and an integer k, we wish to color the points with k colors so that any axis-aligned strip containing sufficiently many points contains all colors. We show that if the strip contains at least 2k - 1 points, such a coloring can always be found. In dimension d, we show that the same holds provided the strip contains at least k(4 ln k + ln d) points. We also consider the dual problem of coloring a given set of axis-aligned strips so that any sufficiently covered point in the plane is covered by k colors. We show that in dimension d the required coverage is at most d(k - 1) + 1. This complements recent impossibility results on decomposition of strip coverings with arbitrary orientations. From the computational point of view, we show that deciding whether a three-dimensional point set can be 2-colored so that any strip containing at least three points contains both colors is NP-complete. This shows a big contrast with the planar case, for which this decision problem is easy.
引用
收藏
页码:327 / 339
页数:13
相关论文
共 50 条
  • [1] Colorful Strips
    Greg Aloupis
    Jean Cardinal
    Sébastien Collette
    Shinji Imahori
    Matias Korman
    Stefan Langerman
    Oded Schwartz
    Shakhar Smorodinsky
    Perouz Taslakian
    Graphs and Combinatorics, 2011, 27 : 327 - 339
  • [2] Colorful Strips
    Aloupis, Greg
    Cardinal, Jean
    Collette, Sebastien
    Imahori, Shinji
    Korman, Matias
    Langerman, Stefan
    Schwartz, Oded
    Smorodinsky, Shakhar
    Taslakian, Perouz
    LATIN 2010: THEORETICAL INFORMATICS, 2010, 6034 : 2 - +
  • [3] Colorful Summer,Colorful Dreams
    程朝峰
    小学生必读(高年级版), 2013, (高年级版) : 46 - 47
  • [4] Colorful Summer,Colorful Dreams
    程朝峰
    小学生必读(高年级版), 2013, (Z2) : 46 - 47
  • [5] Colorful thoughts about colorful displays
    Endler, John A.
    EVOLUTION, 2007, 61 (03) : 713 - 715
  • [6] Colorful
    蔡文婷
    新作文(初中版)(2004-2011), 2005, (Z1) : 53 - 54
  • [7] The colorful Helly theorem and colorful resolutions of ideals
    Floystad, Gunnar
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (06) : 1255 - 1262
  • [8] Colorful
    蔡文婷
    新作文(初中版), 2005, (初中版) : 53 - 54
  • [9] Colorful azulene and its equally colorful derivatives
    Liu, RSH
    JOURNAL OF CHEMICAL EDUCATION, 2002, 79 (02) : 183 - 185
  • [10] COLORFUL MATCHINGS
    Arman, Andrii
    Rodl, Vojtech
    Sales, Marcelo Tadeu
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (02) : 925 - 950