Pairwise distance-based heteroscedasticity test for regressions

被引:12
|
作者
Guo, Xu [1 ]
Jiang, Xuejun [2 ]
Zhang, Shumei [1 ]
Zhu, Lixing [1 ,3 ]
机构
[1] Beijing Normal Univ, Sch Stat, Beijing 100875, Peoples R China
[2] Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518055, Peoples R China
[3] Hong Kong Baptist Univ, Dept Math, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
dimensionality; heteroscedasticity testing; pairwise distance; U-statistic theory; OF-FIT TESTS; VARIANCE FUNCTION; CONSISTENT TEST; PARAMETRIC FORM; MODEL; STATISTICS; ADEQUACY;
D O I
10.1007/s11425-018-9462-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we propose nonparametric testing for heteroscedasticity in nonlinear regression models based on pairwise distances between points in a sample. The test statistic can be formulated such that U-statistic theory can be applied to it. Although the limiting null distribution of the statistic is complicated, we can derive a computationally feasible bootstrap approximation for such a distribution; the validity of the introduced bootstrap algorithm is proven. The test can detect any local alternatives that are different from the null at a nearly optimal rate in hypothesis testing. The convergence rate of this test statistic does not depend on the dimension of the covariates, which significantly alleviates the impact of dimensionality. We provide three simulation studies and a real-data example to evaluate the performance of the test and demonstrate its applications.
引用
收藏
页码:2553 / 2572
页数:20
相关论文
共 50 条
  • [1] Pairwise distance-based heteroscedasticity test for regressions
    Xu Guo
    Xuejun Jiang
    Shumei Zhang
    Lixing Zhu
    ScienceChina(Mathematics), 2020, 63 (12) : 2553 - 2572
  • [2] Pairwise distance-based heteroscedasticity test for regressions
    Xu Guo
    Xuejun Jiang
    Shumei Zhang
    Lixing Zhu
    Science China Mathematics, 2020, 63 : 2553 - 2572
  • [3] Distance-covariance-based tests for heteroscedasticity in nonlinear regressions
    Xu, Kai
    Cao, Mingxiang
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (10) : 2327 - 2356
  • [4] Distance-covariance-based tests for heteroscedasticity in nonlinear regressions
    Kai Xu
    Mingxiang Cao
    Science China Mathematics, 2021, 64 : 2327 - 2356
  • [5] Distance-covariance-based tests for heteroscedasticity in nonlinear regressions
    Kai Xu
    Mingxiang Cao
    ScienceChina(Mathematics), 2021, 64 (10) : 2327 - 2356
  • [6] Distance-based measures of incoherence for pairwise comparisons
    Brunelli, Matteo
    Cavallo, Bice
    KNOWLEDGE-BASED SYSTEMS, 2020, 187
  • [7] Pairwise distance-based tests for conditional symmetry
    Niu, Cuizhen
    Guo, Xu
    Li, Yong
    Zhu, Lixing
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 128 : 145 - 162
  • [8] Distance-based measures of incoherence for pairwise comparisons
    Brunelli, Matteo
    Cavallo, Bice
    Knowledge-Based Systems, 2020, 187
  • [9] On distance-based inconsistency reduction algorithms for pairwise comparisons
    Koczkodaj, W. W.
    Szarek, S. J.
    LOGIC JOURNAL OF THE IGPL, 2010, 18 (06) : 859 - 869
  • [10] Fast Convergence of Distance-based Inconsistency in Pairwise Comparisons
    Koczkodaj, Waldemar W.
    Kosiek, Marek
    Szybowski, Jacek
    Xu, Ding
    FUNDAMENTA INFORMATICAE, 2015, 137 (03) : 355 - 367