On Lebesgue Integrability of Fourier Transforms in Amalgam Spaces

被引:8
|
作者
Coulibaly, Sekou [1 ]
Fofana, Ibrahim [2 ]
机构
[1] Univ Bamako, DER Mathemat & Informat, BPE 3206, Bamako, Mali
[2] Univ Cocody, Lab Math Fondamentales, UFR Math & Informat, 22 BP 582, Abidjan 22, Cote Ivoire
关键词
Fourier transform; Modulus of continuity; Amalgam spaces; LP;
D O I
10.1007/s00041-017-9577-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f be an element of the subspace (Lq,lp)(Rd) (1qp2) of the Wiener amalgam space (Lq,lp)(Rd). It is well-known that the Fourier transform f<^> of f belongs to (Lp,lq)(Rd) where p, q and are the conjugate exponents of p, q and respectively. We give sufficient conditions, in terms of a modulus of continuity of f, for f<^> to be in a Lebesgue space L(Rd) or in an amalgam space (Lp,ls)(Rd) other than (Lp,lq)(Rd). As an application, we obtain a sufficient condition for the solvability in [L2(Rd)<mml:mo stretchy=]d of the equation F=f .
引用
收藏
页码:184 / 209
页数:26
相关论文
共 50 条