Global adaptive neural network control for a class of uncertain non-linear systems

被引:20
|
作者
Chen, P. [1 ]
Qin, H. [2 ]
Sun, M. [3 ]
Fang, X. [4 ]
机构
[1] China Jiliang Univ, Dept Math, Hangzhou 310018, Peoples R China
[2] Chinese Acad Sci, Inst Syst Sci, Beijing 100080, Peoples R China
[3] Zhejiang Univ Technol, Coll Informat Engn, Hangzhou 310023, Zhejiang, Peoples R China
[4] Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
来源
IET CONTROL THEORY AND APPLICATIONS | 2011年 / 5卷 / 05期
基金
中国国家自然科学基金;
关键词
BACKSTEPPING CONTROL; ROBUST-CONTROL;
D O I
10.1049/iet-cta.2009.0548
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The study considers the problem of global adaptive stabilisation for a class of uncertain non-linear systems in which the uncertainty may not be parameterised. With the aid of the partition technique of unity in differential topology, global approximation of a function using neural networks is obtained. The usefulness of the approximation theory is shown in the design of a global adaptive neural network controller. It is proved that the proposed design method is able to ensure boundedness of all the signals in the closed loop, and the state variables converge to zero asymptotically.
引用
收藏
页码:655 / 662
页数:8
相关论文
共 50 条