Multi-Stream Convolutional Neural Network-Based Wearable, Flexible Bionic Gesture Surface Muscle Feature Extraction and Recognition

被引:2
|
作者
Liu, Wansu [1 ]
Lu, Biao [1 ]
机构
[1] Suzhou Univ, Informat Engineenng Dept, Suzhou, Peoples R China
关键词
multistream convolutional neural networks; wearable flexibility; bionic gestures; surface muscles; feature extraction recognition;
D O I
10.3389/fbioe.2022.833793
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Surface electromyographic (sEMG) signals are weak physiological electrical signals, which are highly susceptible to coupling external noise and cause major difficulties in signal acquisition and processing. The study of using sEMG signals to analyze human motion intention mainly involves data preprocessing, feature extraction, and model classification. Feature extraction is an extremely critical part; however, this often involves many manually designed features with specialized domain knowledge, so the experimenter will spend time and effort on feature extraction. To address this problem, deep learning methods that can automatically extract features are applied to the sEMG-based gesture recognition problem, drawing on the success of deep learning for image classification. In this paper, sEMG is captured using a wearable, flexible bionic device, which is simple to operate and highly secure. A multi-stream convolutional neural network algorithm is proposed to enhance the ability of sEMG to characterize hand actions in gesture recognition. The algorithm virtually augments the signal channels by reconstructing the sample structure of the sEMG to provide richer input information for gesture recognition. The methods for noise processing, active segment detection, and feature extraction are investigated, and a basic method for gesture recognition based on the combination of multichannel sEMG signals and inertial signals is proposed. Suitable filters are designed for the common noise in the signal. An improved moving average method based on the valve domain is used to reduce the segmentation error rate caused by the short resting signal time in continuous gesture signals. In this paper, three machine learning algorithms, K-nearest neighbor, linear discriminant method, and multi-stream convolutional neural network, are used for hand action classification experiments, and the effectiveness of the multi-stream convolutional neural network algorithm is demonstrated by comparison of the results. To improve the accuracy of hand action recognition, a final 10 gesture classification accuracy of up to 93.69% was obtained. The separability analysis showed significant differences in the signals of the two cognitive-behavioral tasks when the optimal electrode combination was used. A cross-subject analysis of the test set subjects illustrated that the average correct classification rate using the pervasive electrode combination could reach 93.18%.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A multi-stream convolutional neural network for sEMG-based gesture recognition in muscle-computer interface
    Wei, Wentao
    Wong, Yongkang
    Du, Yu
    Hu, Yu
    Kankanhalli, Mohan
    Geng, Weidong
    [J]. PATTERN RECOGNITION LETTERS, 2019, 119 : 131 - 138
  • [2] MSFF-Net: Multi-Stream Feature Fusion Network for surface electromyography gesture recognition
    Peng, Xiangdong
    Zhou, Xiao
    Zhu, Huaqiang
    Ke, Zejun
    Pan, Congcheng
    [J]. PLOS ONE, 2022, 17 (11):
  • [3] Multimodal Gesture Recognition Using Multi-stream Recurrent Neural Network
    Nishida, Noriki
    Nakayama, Hideki
    [J]. IMAGE AND VIDEO TECHNOLOGY, PSIVT 2015, 2016, 9431 : 682 - 694
  • [4] Multi-Stream Convolutional Neural Network for SAR Automatic Target Recognition
    Zhao, Pengfei
    Liu, Kai
    Zou, Hao
    Zhen, Xiantong
    [J]. REMOTE SENSING, 2018, 10 (09)
  • [5] Multi-stream fusion network for continuous gesture recognition based on sEMG
    Li, Jun
    Zou, Chunlong
    Tang, Dalai
    Sun, Ying
    Fan, Hanwen
    Li, Boao
    Tang, Xinjie
    [J]. International Journal of Wireless and Mobile Computing, 2024, 26 (04) : 374 - 383
  • [6] Dynamic Gesture Recognition Using Surface EMG Signals Based on Multi-Stream Residual Network
    Yang, Zhiwen
    Jiang, Du
    Sun, Ying
    Tao, Bo
    Tong, Xiliang
    Jiang, Guozhang
    Xu, Manman
    Yun, Juntong
    Liu, Ying
    Chen, Baojia
    Kong, Jianyi
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
  • [7] Multi-feature fusion gesture recognition based on deep convolutional neural network
    Yun Wei-guo
    Shi Qi-qi
    Wang Min
    [J]. CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2019, 34 (04) : 417 - 422
  • [8] Region based multi-stream convolutional neural networks for collective activity recognition
    Zalluhoglu, Cemil
    Ikizler-Cinbis, Nazli
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 60 : 170 - 179
  • [9] Improved Multi-Stream Convolutional Block Attention Module for sEMG-Based Gesture Recognition
    Wang, Shudi
    Huang, Li
    Jiang, Du
    Sun, Ying
    Jiang, Guozhang
    Li, Jun
    Zou, Cejing
    Fan, Hanwen
    Xie, Yuanmin
    Xiong, Hegen
    Chen, Baojia
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [10] Multi-stream convolutional neural network-based fault diagnosis for variable frequency drives in sustainable manufacturing systems
    Grezmak, John
    Zhang, Jianjing
    Wang, Peng
    Gao, Robert X.
    [J]. SUSTAINABLE MANUFACTURING - HAND IN HAND TO SUSTAINABILITY ON GLOBE, 2020, 43 : 511 - 518